Let W={a0+a1x+a2x2|a1,a1,a2∈R,a0+a1=0} be a subset of P2, the collection of all polynomials of degree ≤2. Let p=a0+a1x+a2x2∈W, q=b0+b1x+b2x2∈W and scalar k. Which of the following shows that W is a subspace of P2? A. 1−x+x2∈W, (a0+b0)+(a1+b1)=0 and ka0+ka1=0 B. (a0+b0)+(a1+b1)=0 and ka0+ka1=0 C. 1+x2∈W, (a0+b0)+(a1+b1)=0 and ka0+ka1=0 D. 1−x+7x2∈W, a0+a1=0, b0+b1=0 and ka0+ka1=0 E. 2−2x∈W, (a0+b0)+(a1+b1)=0 and ka0=0,ka1=0
Let W={a0+a1x+a2x2|a1,a1,a2∈R,a0+a1=0} be a subset of P2, the collection of all polynomials of degree ≤2. Let p=a0+a1x+a2x2∈W, q=b0+b1x+b2x2∈W and scalar k. Which of the following shows that W is a subspace of P2? A. 1−x+x2∈W, (a0+b0)+(a1+b1)=0 and ka0+ka1=0 B. (a0+b0)+(a1+b1)=0 and ka0+ka1=0 C. 1+x2∈W, (a0+b0)+(a1+b1)=0 and ka0+ka1=0 D. 1−x+7x2∈W, a0+a1=0, b0+b1=0 and ka0+ka1=0 E. 2−2x∈W, (a0+b0)+(a1+b1)=0 and ka0=0,ka1=0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Let W={a0+a1x+a2x2|a1,a1,a2∈R,a0+a1=0} be a subset of P2, the collection of all polynomials of degree ≤2. Let p=a0+a1x+a2x2∈W, q=b0+b1x+b2x2∈W and scalar k. Which of the following shows that W is a subspace of P2?
- A. 1−x+x2∈W, (a0+b0)+(a1+b1)=0 and ka0+ka1=0
- B. (a0+b0)+(a1+b1)=0 and ka0+ka1=0
- C. 1+x2∈W, (a0+b0)+(a1+b1)=0 and ka0+ka1=0
- D. 1−x+7x2∈W, a0+a1=0, b0+b1=0 and ka0+ka1=0
- E. 2−2x∈W, (a0+b0)+(a1+b1)=0 and ka0=0,ka1=0
Reset Selection
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,