Let W={a0+a1x+a2x2|a1,a1,a2∈R,a0+a1=0} be a subset of P2, the collection of all polynomials of degree ≤2. Let p=a0+a1x+a2x2∈W, q=b0+b1x+b2x2∈W and scalar k. Which of the following shows that W is a subspace of P2?    A. 1−x+x2∈W, (a0+b0)+(a1+b1)=0 and ka0+ka1=0  B. (a0+b0)+(a1+b1)=0 and ka0+ka1=0  C. 1+x2∈W, (a0+b0)+(a1+b1)=0 and ka0+ka1=0  D. 1−x+7x2∈W, a0+a1=0, b0+b1=0 and ka0+ka1=0  E. 2−2x∈W, (a0+b0)+(a1+b1)=0 and ka0=0,ka1=0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Let W={a0+a1x+a2x2|a1,a1,a2∈R,a0+a1=0} be a subset of P2, the collection of all polynomials of degree ≤2. Let p=a0+a1x+a2x2∈W, q=b0+b1x+b2x2∈W and scalar k. Which of the following shows that W is a subspace of P2?

 
  •  A. 1−x+x2∈W, (a0+b0)+(a1+b1)=0 and ka0+ka1=0
  •  B. (a0+b0)+(a1+b1)=0 and ka0+ka1=0
  •  C. 1+x2∈W, (a0+b0)+(a1+b1)=0 and ka0+ka1=0
  •  D. 1−x+7x2∈W, a0+a1=0, b0+b1=0 and ka0+ka1=0
  •  E. 2−2x∈W, (a0+b0)+(a1+b1)=0 and ka0=0,ka1=0

Reset Selection

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,