Let V be the set of all positive real numbers. Determine whether V is a vector space with the following operations. x + y  =  xy   Addition cx  =  xc   Scalar multiplication If it is, then verify each vector space axiom; if it is not, then state all vector space axioms that fail.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Let V be the set of all positive real numbers. Determine whether V is a vector space with the following operations.

x + y  =  xy
 
Addition
cx  =  xc   Scalar multiplication

If it is, then verify each vector space axiom; if it is not, then state all vector space axioms that fail.

STEP 1: Check each of the 10 axioms.
(1)    u + v is in V.
This axiom holds.This axiom fails.    

(2)    u + v = v + u
This axiom holds.This axiom fails.    

(3)    u + (v + w) = (u + v) + w
This axiom holds.This axiom fails.    

(4)    V has a zero vector 0 such that for every u in Vu + 0 = u.
This axiom holds.This axiom fails.    

(5)    For every u in V, there is a vector in V denoted by −u such that u + (−u) = 0.
This axiom holds.This axiom fails.    

(6)    cu is in V.
This axiom holds.This axiom fails.    

(7)    c(u + v) = cu + cv
This axiom holds.This axiom fails.    

(8)    (c + d)u = cu + du
This axiom holds.This axiom fails.    

(9)    c(du) = (cd)u
This axiom holds.This axiom fails.    

(10)    1(u) = u
This axiom holds.This axiom fails.    
STEP 2: Use your results from Step 1 to decide whether V is a vector space.
V is a vector space.V is not a vector space.    
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,