Let T:R4→R2 be a linear transformation defined by T(x1,x2,x3,x4)=(x1−5x2,x3−7x4). Which of the following statements are true?    A. T is one-to-one (or injective).    B. T is onto (or surjective).    C. T is invertible.    D. T−1(0,0)=(0,0,0,0)    E. {(5,1,0,0),(0,0,7,1)} is a basis for ker(T).    F. {(1,0),(0,1)} is a basis for range(T).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Let T:R4→R2 be a linear transformation defined by T(x1,x2,x3,x4)=(x1−5x2,x3−7x4). Which of the following statements are true?

 
 A. T is one-to-one (or injective).
 
 B. T is onto (or surjective).
 
 C. T is invertible.
 
 D. T−1(0,0)=(0,0,0,0)
 
 E. {(5,1,0,0),(0,0,7,1)} is a basis for ker(T).
 
 F. {(1,0),(0,1)} is a basis for range(T).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Linear Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,