Let's consider a simple pendulum, consisting of a point mass m, fixed to the end of a massless rod of length l, whose other end is fixed so that the mass can swing freely in a vertical plane. The pendulum's position can be specified by its angle Φ from the equilbrium position. Prove that the pendulum's potential energy is U(ϕ)=mgl(1−cosϕ). Write down the total energy E as a function of Φ and ϕ˙. Show that by differentiating E with respect to t you can get the equation of motion for Φ. Solve for Φ(t). If you solve properly, you should find periodic motion. What is the period of the motion?
Let's consider a simple pendulum, consisting of a point mass m, fixed to the end of a massless rod of length l, whose other end is fixed so that the mass can swing freely in a vertical plane. The pendulum's position can be specified by its angle Φ from the equilbrium position. Prove that the pendulum's potential energy is U(ϕ)=mgl(1−cosϕ). Write down the total energy E as a function of Φ and ϕ˙. Show that by differentiating E with respect to t you can get the equation of motion for Φ. Solve for Φ(t). If you solve properly, you should find periodic motion. What is the period of the motion?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Let's consider a simple pendulum, consisting of a point mass m, fixed to the end of a massless rod of length l, whose other end is fixed so that the mass can swing freely in a vertical plane. The pendulum's position can be specified by its angle Φ from the equilbrium position.
- Prove that the pendulum's potential energy is U(ϕ)=mgl(1−cosϕ).
- Write down the total energy E as a function of Φ and ϕ˙.
- Show that by differentiating E with respect to t you can get the equation of motion for Φ.
- Solve for Φ(t). If you solve properly, you should find periodic motion. What is the period of the motion?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON