let's assume that: v = avi + a22+a33+a44 +⋯+a88 100 50 200 150 175 25 40 200 +as 100 50 200 150 175 25 40 200 = a1 Hence we obtain:v= -1 0 0 0 0 0 1 1 1 1 1 1 1 1 -1 1 1 -1 1 -1 1 -1 0 0 1 -1 1 -1 0 1 1 1 1 + as = 山 1 -1 1 1 [1 1 10 1 1 1 0 1 1 -1 0 1 1 -1 1 -1 -1 0 0 0 -1 1 0 -1 -1 + a2 0 1 -1 100 50 200 150 235 175 2 25 40 200 0 0 0 0 Toooo 0 0 1 1 1 1 0 -1 + ar 0 1 1 -1 0 -1 + as 0 0 0 1 -1 0 0 (1000000 100 + as 24元 50 10 25 25 75 80 235 [01 a2 a3 a4 || = as a6 07 as 11-0000 -1 0 0 1 0 0 -1 0 0 0 1 0 0 0 -1 0 1 0 0 1 0 0 -1 0 0 0 0 1 0 0 -1 0 0 1 0 0 0 0 1 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 -1 + as 0 0 0 0 0 1 -1 0 1 0 -1 100 50 200 150 175 25 40 200 0 0 0 0 1 1 141 = a₁ a2 a3 04 as a6 07 as a1 02 a3 a4 as a6 a7 08 + -v2+-5003-10v4+25vs +250g + 75v7 - 80ug 15 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Part A needed Part A needed to be solved correctly in 30 minutes and get the thumbs up please show neat and clean work for it by hand solution needed
let's assume that: v= a₁v₁ + a2v2 + a3v3 + a4v4 + + asv8
1
0
1
0
1
0
→
↑
100
50
200
150
175
25
40
200
+as
100
50
200
150
175
25
40
200
Hence we obtain : v=
1
1
1
1
1
1 1
1 -1
1 -1
1 -1
1 -1
100
50
= a1
1
-1
TOOOOOO
200
150
175
25
40
200
0
0
0
0
0
0
0
0
+a6
10
1
0
-1 0
-1
0
1
1
-1
=
+ a2
COLTO ooo
0
235
2
1
-1
0
0
1 1
1
1
1
1
1
1 -1
1
-1
0
1
1 -1
0
1 -1
0
1 -1
0
1 -1 0
0
1
-1
0
0
0
0
0
-1 0
a1
a2
a3
a4
a5
a6
a7
as
1
-1
-1
+ ar
+ a3
0
0
0
0
DOLTOOOO
0
0
0
1
-1
0
0
0
0
0
1 0
-1 0
1
-1
0
1
0
0
-1
0
0 0 1
0 0
-1
1 0
0
1 0 0
-1
0
0
-1
0 0
235
0
0
0
0 1
0
← ├ ន = ន ន ខ
-50
25
75
+ as
0
0
0
-10
=
-80
-1
-1
0
0
0
0
+ as
-1
oooooOIT
0
0
0
0
0
1
-1
0
0
0 0
0
0
0
0
1 0
-1
0
1
-1
0
0
100
50
200
150
175
25
40
200
0
1
1
=
a₁
a2
a3
a4
a5
a6
a7
as
a1
a2
a3
a4
a5
a6
a7
as
15
∙v₁ + 202 +-50v3-10v4 +25v5 +25v6 +75v7 - 80v8
Transcribed Image Text:let's assume that: v= a₁v₁ + a2v2 + a3v3 + a4v4 + + asv8 1 0 1 0 1 0 → ↑ 100 50 200 150 175 25 40 200 +as 100 50 200 150 175 25 40 200 Hence we obtain : v= 1 1 1 1 1 1 1 1 -1 1 -1 1 -1 1 -1 100 50 = a1 1 -1 TOOOOOO 200 150 175 25 40 200 0 0 0 0 0 0 0 0 +a6 10 1 0 -1 0 -1 0 1 1 -1 = + a2 COLTO ooo 0 235 2 1 -1 0 0 1 1 1 1 1 1 1 1 -1 1 -1 0 1 1 -1 0 1 -1 0 1 -1 0 1 -1 0 0 1 -1 0 0 0 0 0 -1 0 a1 a2 a3 a4 a5 a6 a7 as 1 -1 -1 + ar + a3 0 0 0 0 DOLTOOOO 0 0 0 1 -1 0 0 0 0 0 1 0 -1 0 1 -1 0 1 0 0 -1 0 0 0 1 0 0 -1 1 0 0 1 0 0 -1 0 0 -1 0 0 235 0 0 0 0 1 0 ← ├ ន = ន ន ខ -50 25 75 + as 0 0 0 -10 = -80 -1 -1 0 0 0 0 + as -1 oooooOIT 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 1 0 -1 0 1 -1 0 0 100 50 200 150 175 25 40 200 0 1 1 = a₁ a2 a3 a4 a5 a6 a7 as a1 a2 a3 a4 a5 a6 a7 as 15 ∙v₁ + 202 +-50v3-10v4 +25v5 +25v6 +75v7 - 80v8
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,