Let H be the set of all points (x, y) in ℝ2 such that x2 + xy + 3y2 = 3. Show that H is a closed subset of ℝ2 (considered with the Euclidean metric). Is H bounded?
Let H be the set of all points (x, y) in ℝ2 such that x2 + xy + 3y2 = 3. Show that H is a closed subset of ℝ2 (considered with the Euclidean metric). Is H bounded?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Let H be the set of all points (x, y) in ℝ2 such that x2 + xy + 3y2 = 3. Show that H is a closed subset of ℝ2 (considered with the Euclidean metric). Is H bounded?
Bear in mind I can't use facts about continous functions. So this is what I learned in this chapter:
- Balls/neighborhood centered at a point a consists of all points strictly within some radius r of the point.
- A set is open if every point in the set has a small ball around it that is contained in the set.
- A set is closed if its complement is open, and sequentially closed if every sequence in the set has all accumulation points in the set. We proved these are equivalent.
- A set is sequentially compact if every sequence in the set has accumulation points in the set.
- A set is compact if every cover by open sets has a finite subcover. Compact sets are sequentially compact.
- In the reals, compact, sequentially compact, and closed + bounded are equivalent.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,