Let H be the hemisphere  x2 + y2 + z2 = 29, z ≥ 0,  and suppose f is a continuous function with  f(3, 2, 4) = 7,   f(3, −2, 4) = 8,   f(−3, 2, 4) = 10,  and  f(−3, −2, 4) = 12.  By dividing H into four patches, estimate the value below. (Round your answer to the nearest whole number.)       Hf(x, y, z) dS

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let H be the hemisphere 
x2 + y2 + z2 = 29, z ≥ 0,
 and suppose f is a continuous function with 
f(3, 2, 4) = 7,
 
f(3, −2, 4) = 8,
 
f(−3, 2, 4) = 10,
 and 
f(−3, −2, 4) = 12.
 By dividing H into four patches, estimate the value below. (Round your answer to the nearest whole number.)
 
 
 
H
f(x, y, z) dS
 
Let \( H \) be the hemisphere \( x^2 + y^2 + z^2 = 29, \, z \geq 0 \), and suppose \( f \) is a continuous function with \( f(3, 2, 4) = 7 \), \( f(3, -2, 4) = 8 \), \( f(-3, 2, 4) = 10 \), and \( f(-3, -2, 4) = 12 \). By dividing \( H \) into four patches, estimate the value below. (Round your answer to the nearest whole number.)

\[
\iint_H f(x, y, z) \, dS
\]

\_\_\_\_\_\_\_
Transcribed Image Text:Let \( H \) be the hemisphere \( x^2 + y^2 + z^2 = 29, \, z \geq 0 \), and suppose \( f \) is a continuous function with \( f(3, 2, 4) = 7 \), \( f(3, -2, 4) = 8 \), \( f(-3, 2, 4) = 10 \), and \( f(-3, -2, 4) = 12 \). By dividing \( H \) into four patches, estimate the value below. (Round your answer to the nearest whole number.) \[ \iint_H f(x, y, z) \, dS \] \_\_\_\_\_\_\_
Expert Solution
Step 1

The equation of a sphere is represented as: x2+y2+z2=r2, where r is the radius of the sphere.

It is known that: sf(x, y, z)dsi=1nfxi, yi, zis.

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,