Let z = ax + by be an objective function that depends on x and y. Furthermore, z is subject to a number of constraints on x and y. If a maximum or minimum value of z exists, it can be determined as follows: 1. Graph the system of inequalities representing the constraints. 2. Find the value of the objective function at each corner, or vertex, of the graphed region. The maximum and minimum of the objective function occur at one or more of the corner points.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Topic Video
Question

Use the two steps for solving a linear programming problem given to solve:You are about to take a test that contains computation problems worth 6 points each and word problems worth 10 points each. You can do a computation problem in 2 minutes and a word problem in 4 minutes. You have 40 minutes to take the test and may answer no more than 12 problems. Assuming you answer all the problems attempted correctly, how many of each type of problem must you answer to maximize your score? What is the maximum score?

Let z = ax + by be an objective function that depends on x and y. Furthermore,
z is subject to a number of constraints on x and y. If a maximum or minimum
value of z exists, it can be determined as follows:
1. Graph the system of inequalities representing the constraints.
2. Find the value of the objective function at each corner, or vertex, of the
graphed region. The maximum and minimum of the objective function
occur at one or more of the corner points.
Transcribed Image Text:Let z = ax + by be an objective function that depends on x and y. Furthermore, z is subject to a number of constraints on x and y. If a maximum or minimum value of z exists, it can be determined as follows: 1. Graph the system of inequalities representing the constraints. 2. Find the value of the objective function at each corner, or vertex, of the graphed region. The maximum and minimum of the objective function occur at one or more of the corner points.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Optimization
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning