Let z = 9.8 - 5i. Write z in the form a + b*i: Z = 9.8+5*i Let u = 5 - 2i and v= - 8 + 6i. Write u + V in the form a + b*i. U + V = -3+4*i X Write the following fraction in the form a + bi: 1 + - i 2 6i (Hint: Try multiplying numerator and denominator by the conjugate of the de symbolic formatting help
Let z = 9.8 - 5i. Write z in the form a + b*i: Z = 9.8+5*i Let u = 5 - 2i and v= - 8 + 6i. Write u + V in the form a + b*i. U + V = -3+4*i X Write the following fraction in the form a + bi: 1 + - i 2 6i (Hint: Try multiplying numerator and denominator by the conjugate of the de symbolic formatting help
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Complex Numbers and Conjugates**
**Problem 1:**
Let \( z = 9.8 - 5i \). Write \( \overline{z} \) in the form \( a + b \cdot i \):
- \(\overline{z} = 9.8 + 5i\) ✔
**Problem 2:**
Let \( u = 5 - 2i \) and \( v = -8 + 6i \). Write \(\overline{u} + \overline{v}\) in the form \( a + b \cdot i \):
- \(\overline{u} + \overline{v} = -3 + 4i\) ✘
**Problem 3:**
Write the following fraction in the form \( a + bi \):
\[
\frac{1}{2 - 6i} = \text{[ ]} + \text{[ ]} i
\]
*Hint: Try multiplying the numerator and denominator by the conjugate of the denominator.*
**Note:**
- The correct use of conjugates is essential in simplifying complex fractions.
**Extra Help:**
- A button labeled "symbolic formatting help" is present for further assistance.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc0cfd4d2-3b60-4b70-8ad1-e02fd206eb06%2Ffc3d1404-0d24-4d60-b751-6bd7938bfbe5%2Fw2hep5_processed.png&w=3840&q=75)
Transcribed Image Text:**Complex Numbers and Conjugates**
**Problem 1:**
Let \( z = 9.8 - 5i \). Write \( \overline{z} \) in the form \( a + b \cdot i \):
- \(\overline{z} = 9.8 + 5i\) ✔
**Problem 2:**
Let \( u = 5 - 2i \) and \( v = -8 + 6i \). Write \(\overline{u} + \overline{v}\) in the form \( a + b \cdot i \):
- \(\overline{u} + \overline{v} = -3 + 4i\) ✘
**Problem 3:**
Write the following fraction in the form \( a + bi \):
\[
\frac{1}{2 - 6i} = \text{[ ]} + \text{[ ]} i
\]
*Hint: Try multiplying the numerator and denominator by the conjugate of the denominator.*
**Note:**
- The correct use of conjugates is essential in simplifying complex fractions.
**Extra Help:**
- A button labeled "symbolic formatting help" is present for further assistance.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning