Let X~ N(2,1), Y~ N(-1,4), and cov(X,Y) = 2. a. Find E[X-Y] b. Find the correlation coefficient p(X,Y) c. Find Var[X – Y]. d. Suppose in addition to the above conditions, we have that X - Y is a normal random variable. What is P(X-Y> 0)?
Let X~ N(2,1), Y~ N(-1,4), and cov(X,Y) = 2. a. Find E[X-Y] b. Find the correlation coefficient p(X,Y) c. Find Var[X – Y]. d. Suppose in addition to the above conditions, we have that X - Y is a normal random variable. What is P(X-Y> 0)?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![1. Let \( X \sim N(2,1) \), \( Y \sim N(-1,4) \), and \( \text{cov}(X,Y) = 2 \).
a. Find \( E[X - Y] \)
b. Find the correlation coefficient \( \rho(X, Y) \)
c. Find \( \text{Var}[X - Y] \)
d. Suppose in addition to the above conditions, we have that \( X - Y \) is a normal random variable. What is \( P(X - Y > 0) \)?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa86feb48-aed4-4133-a748-653f8a12a813%2F158c71dd-0a35-419a-8e10-2d0bebe72c40%2F0151ui9_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1. Let \( X \sim N(2,1) \), \( Y \sim N(-1,4) \), and \( \text{cov}(X,Y) = 2 \).
a. Find \( E[X - Y] \)
b. Find the correlation coefficient \( \rho(X, Y) \)
c. Find \( \text{Var}[X - Y] \)
d. Suppose in addition to the above conditions, we have that \( X - Y \) is a normal random variable. What is \( P(X - Y > 0) \)?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: According to this given question
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)