Let xo = 0.5. Given 1 f(x) = -2ex + 4x² ELL f'(x) = 2e-x + x³ 1 1 1 120 x -x5 + 2x 24 1 ƒ"(x) = −2e¯* + 3x²-x f(4)(x) = -2e-* +6-x f(5)(x) = 2e-x-1 f(6)(x) = -2e-* 6 + 2 1 2 f''(x) = 2e-x + 6x - x² 2 x3 a. Find the Taylor Polynomial, T3 (x), of degree at most 3 for f(x) expanded about xo. b. Give the general error formula for f(x) - T3(x) for any x. c. Find the absolute error in using T3 (0.65) to approximate f(0.65). d. Use the error formula to find a bound for the absolute error in approximating f (0.65) with T3 (0.65).
Let xo = 0.5. Given 1 f(x) = -2ex + 4x² ELL f'(x) = 2e-x + x³ 1 1 1 120 x -x5 + 2x 24 1 ƒ"(x) = −2e¯* + 3x²-x f(4)(x) = -2e-* +6-x f(5)(x) = 2e-x-1 f(6)(x) = -2e-* 6 + 2 1 2 f''(x) = 2e-x + 6x - x² 2 x3 a. Find the Taylor Polynomial, T3 (x), of degree at most 3 for f(x) expanded about xo. b. Give the general error formula for f(x) - T3(x) for any x. c. Find the absolute error in using T3 (0.65) to approximate f(0.65). d. Use the error formula to find a bound for the absolute error in approximating f (0.65) with T3 (0.65).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Let xo = 0.5. Given
1
f(x) = -2e-x +
f'(x) = 2e-x + x³ x4 + 2
1
4x²
120
1
24
f"(x) = -2e-x + 3x² - ²x³
——
5
x³ + 2x
f''(x) = 2e-x + 6x - 7x²
f(4)(x) = -2e-x + 6-*
f(5) (x) = 2e-x-1
f(6)(x) = -2e-*
a. Find the Taylor Polynomial, T3 (x), of degree at most 3 for f(x) expanded about xo.
b. Give the general error formula for f(x) - T3(x) for any x.
c. Find the absolute error in using T3 (0.65) to approximate f(0.65).
d. Use the error formula to find a bound for the absolute error in approximating f(0.65) with T3 (0.65).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb8e4779c-9790-4c6a-aebf-9bedd844e22b%2F90764acf-ce80-4de1-a196-dbc0ec501b6e%2Fsx256g_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Let xo = 0.5. Given
1
f(x) = -2e-x +
f'(x) = 2e-x + x³ x4 + 2
1
4x²
120
1
24
f"(x) = -2e-x + 3x² - ²x³
——
5
x³ + 2x
f''(x) = 2e-x + 6x - 7x²
f(4)(x) = -2e-x + 6-*
f(5) (x) = 2e-x-1
f(6)(x) = -2e-*
a. Find the Taylor Polynomial, T3 (x), of degree at most 3 for f(x) expanded about xo.
b. Give the general error formula for f(x) - T3(x) for any x.
c. Find the absolute error in using T3 (0.65) to approximate f(0.65).
d. Use the error formula to find a bound for the absolute error in approximating f(0.65) with T3 (0.65).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)