Let Xi and Yi be random variables with Var(Xi) = σx2 and Var(Yi) = σy2 for all i ∈ {1, . . . , n}. Assume that each pair (Xi, Yi) has correlation Corr(Xi, Yi) = ρ, but that (Xi,Yi) and (Xj,Yj) are independent for all i ̸= j. (a) What is Cov(Xi,Yi) in terms of σx, σy and ρ? (b) Show that Cov(Xi,Y ̄) = (ρσxσy)/n, where Y ̄ is the average of the Yi (c) Determine Cov(X ̄,Y ̄).
Let Xi and Yi be random variables with Var(Xi) = σx2 and Var(Yi) = σy2 for all i ∈ {1, . . . , n}. Assume that each pair (Xi, Yi) has correlation Corr(Xi, Yi) = ρ, but that (Xi,Yi) and (Xj,Yj) are independent for all i ̸= j. (a) What is Cov(Xi,Yi) in terms of σx, σy and ρ? (b) Show that Cov(Xi,Y ̄) = (ρσxσy)/n, where Y ̄ is the average of the Yi (c) Determine Cov(X ̄,Y ̄).
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Let Xi and Yi be random variables with Var(Xi) = σx2 and Var(Yi) = σy2 for all i ∈ {1, . . . , n}. Assume that each pair (Xi, Yi) has
(a) What is Cov(Xi,Yi) in terms of σx, σy and ρ?
(b) Show that Cov(Xi,Y ̄) = (ρσxσy)/n, where Y ̄ is the average of the Yi
(c) Determine Cov(X ̄,Y ̄).
B2. Consider the random variables Xi and Yi from question B1 again.
(a) Show that the sample
Hint: consider the equality Xi − X ̄ = (Xi − μ) − (X ̄ − μ).
(b) Can you conclude from the statement in part (a) that the sample correlation is an
unbiased estimator of Corr(X1, Y1)? Justify your answer.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman