Let  X1,   X2,  and  X3  represent the times necessary to perform three successive repair tasks at a certain service facility. Suppose they are independent, normal rv's with expected values  ?1,   ?2,  and  ?3  and variances  ?12,   ?22,  and  ?32,  respectively. (Round your answers to four decimal places.)   (a) If  ?1 = ?2 = ?3 = 60  and  ?12 = ?22 = ?32 = 18,  calculate  P(To ≤ 204)  and  P(144 ≤ To ≤ 204). P(To ≤ 204) =  P(144 ≤ To ≤ 204) =  (b) Using the  ?i's  and  ?i's  given in part (a), calculate both  P(54 ≤ X)  and  P(58 ≤ X ≤ 62). P(54 ≤ X) = P(58 ≤ X ≤ 62) = (c) Using the  ?i's  and  ?i's  given in part (a), calculate  P(−12 ≤ X1 − 0.5X2 − 0.5X3 ≤ 6). P(−12 ≤ X1 − 0.5X2 − 0.5X3 ≤ 6) =

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
Let 
X1,
 
X2,
 and 
X3
 represent the times necessary to perform three successive repair tasks at a certain service facility. Suppose they are independent, normal rv's with expected values 
?1,
 
?2,
 and 
?3
 and variances 
?12,
 
?22,
 and 
?32,
 respectively. (Round your answers to four decimal places.)
 
(a)
If 
?1 = ?2 = ?3 = 60
 and 
?12 = ?22 = ?32 = 18,
 calculate 
P(To ≤ 204)
 and 
P(144 ≤ To ≤ 204).
P(To ≤ 204)
P(144 ≤ To ≤ 204)
(b)
Using the 
?i's
 and 
?i's
 given in part (a), calculate both 
P(54 ≤ X)
 and 
P(58 ≤ X ≤ 62).
P(54 ≤ X)
=
P(58 ≤ X ≤ 62)
=
(c)
Using the 
?i's
 and 
?i's
 given in part (a), calculate 
P(−12 ≤ X1 − 0.5X2 − 0.5X3 ≤ 6).
P(−12 ≤ X1 − 0.5X2 − 0.5X3 ≤ 6) = 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON