Let X1, ...., Xn be a random sample from a population with θ unknown and given by the density f(x; θ) = ( 1 2θ √2 x e − √2 x θ if x > 0 0 if x ≤ 0 1. Show that E(X) = 2θ 2 and E( √2 X) = θ (Hint: you may use that R ∞ 0 e −z z α−1dz = (α − 1)! for every α ∈ N). 2. Show that the statistic θbn := 1 n Xn i=1 p2 Xi (1) is an unbiased estimator of θ. 3. Give the definition of a consistent estimator. 4. Show that the estimator θbn given in relation (1) is a consistent estimator of θ. 5. Show that the estimator θbn is a minimum v
Let X1, ...., Xn be a random sample from a population with θ unknown and given by the density f(x; θ) = ( 1 2θ √2 x e − √2 x θ if x > 0 0 if x ≤ 0 1. Show that E(X) = 2θ 2 and E( √2 X) = θ (Hint: you may use that R ∞ 0 e −z z α−1dz = (α − 1)! for every α ∈ N). 2. Show that the statistic θbn := 1 n Xn i=1 p2 Xi (1) is an unbiased estimator of θ. 3. Give the definition of a consistent estimator. 4. Show that the estimator θbn given in relation (1) is a consistent estimator of θ. 5. Show that the estimator θbn is a minimum v
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Let X1, ...., Xn be a random sample from a population with θ unknown and given by the density f(x; θ) = ( 1 2θ √2 x e − √2 x θ if x > 0 0 if x ≤ 0
1. Show that E(X) = 2θ 2 and E( √2 X) = θ (Hint: you may use that R ∞ 0 e −z z α−1dz = (α − 1)! for every α ∈ N).
2. Show that the statistic θbn := 1 n Xn i=1 p2 Xi (1) is an unbiased estimator of θ.
3. Give the definition of a consistent estimator.
4. Show that the estimator θbn given in relation (1) is a consistent estimator of θ.
5. Show that the estimator θbn is a minimum variance estimator of θ. (Hint: use the Cramer-Rao inequality given by var(θb) ≥ 1 nE ∂ ln(f(X;θ) ∂θ 2
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 11 images