Let x³ + y5 + 7x + 6y = 1. Compute dy at (1,-1). dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
**Problem Statement**

Given the equation \( x^3 + y^5 + 7x + 6y = 1 \), compute \(\frac{dy}{dx}\) at the point (1, -1).

**Solution Approach**

To find \(\frac{dy}{dx}\), we need to implicitly differentiate the given equation with respect to \( x \). 

Start by differentiating each term of the equation with respect to \( x \):

\[ \frac{d}{dx}(x^3) + \frac{d}{dx}(y^5) + \frac{d}{dx}(7x) + \frac{d}{dx}(6y) = \frac{d}{dx}(1) \]

**Step-by-step Derivation:**

1. Differentiate \( x^3 \):
\[ \frac{d}{dx}(x^3) = 3x^2 \]

2. Differentiate \( y^5 \) using the chain rule:
\[ \frac{d}{dx}(y^5) = 5y^4 \frac{dy}{dx} \]

3. Differentiate \( 7x \):
\[ \frac{d}{dx}(7x) = 7 \]

4. Differentiate \( 6y \) using the chain rule:
\[ \frac{d}{dx}(6y) = 6 \frac{dy}{dx} \]

5. The derivative of 1, a constant, is 0:
\[ \frac{d}{dx}(1) = 0 \]

**Combining All Terms:**

\[ 3x^2 + 5y^4 \frac{dy}{dx} + 7 + 6 \frac{dy}{dx} = 0 \]

**Solve for \(\frac{dy}{dx}\):**

Rearrange to isolate \( \frac{dy}{dx} \):
\[ 5y^4 \frac{dy}{dx} + 6 \frac{dy}{dx} = -3x^2 - 7 \]
\[ \left(5y^4 + 6 \right) \frac{dy}{dx} = -3x^2 - 7 \]
\[ \frac{dy}{dx} = \frac{-3x^2 - 7}{5y^4 + 6} \]

**Substitute the Point (
Transcribed Image Text:**Problem Statement** Given the equation \( x^3 + y^5 + 7x + 6y = 1 \), compute \(\frac{dy}{dx}\) at the point (1, -1). **Solution Approach** To find \(\frac{dy}{dx}\), we need to implicitly differentiate the given equation with respect to \( x \). Start by differentiating each term of the equation with respect to \( x \): \[ \frac{d}{dx}(x^3) + \frac{d}{dx}(y^5) + \frac{d}{dx}(7x) + \frac{d}{dx}(6y) = \frac{d}{dx}(1) \] **Step-by-step Derivation:** 1. Differentiate \( x^3 \): \[ \frac{d}{dx}(x^3) = 3x^2 \] 2. Differentiate \( y^5 \) using the chain rule: \[ \frac{d}{dx}(y^5) = 5y^4 \frac{dy}{dx} \] 3. Differentiate \( 7x \): \[ \frac{d}{dx}(7x) = 7 \] 4. Differentiate \( 6y \) using the chain rule: \[ \frac{d}{dx}(6y) = 6 \frac{dy}{dx} \] 5. The derivative of 1, a constant, is 0: \[ \frac{d}{dx}(1) = 0 \] **Combining All Terms:** \[ 3x^2 + 5y^4 \frac{dy}{dx} + 7 + 6 \frac{dy}{dx} = 0 \] **Solve for \(\frac{dy}{dx}\):** Rearrange to isolate \( \frac{dy}{dx} \): \[ 5y^4 \frac{dy}{dx} + 6 \frac{dy}{dx} = -3x^2 - 7 \] \[ \left(5y^4 + 6 \right) \frac{dy}{dx} = -3x^2 - 7 \] \[ \frac{dy}{dx} = \frac{-3x^2 - 7}{5y^4 + 6} \] **Substitute the Point (
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning