Let X₁, Xn be a random sample of size n from the U(0, 0) distribution, where > 0 is an unknown parameter. Recall that the pdf fof the U(0, 0) distribution is of the form [0-¹ f(x) = { {0¹ if 0
Let X₁, Xn be a random sample of size n from the U(0, 0) distribution, where > 0 is an unknown parameter. Recall that the pdf fof the U(0, 0) distribution is of the form [0-¹ f(x) = { {0¹ if 0
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
![Let X₁,..., Xn be a random sample of size n from the U(0, 0) distribution, where @ > 0
is an unknown parameter. Recall that the pdf fof the U(0, 0) distribution is of the form
f(x) = { 0
-1
if 0 < x < 0
otherwise.
Note that the information about contained in the random sample X₁, Xn equals the
information about contained in the statistic
T = max(X₁, ..',
Xn).
To understand why so, let's think of the random sample as being obtained in a sequential
manner, that is, you obtain X₁ and pause before obtaining X₂. What does X₁ tell you
about? It tells you that > X₁. Once you have X₁ and the information that > X₁,
obtain X₂. If X₂ > X₁, then you know a bit more about 8, namely, 0 > X₂; however, if
X2 X₁, then it does not contribute anything, above and beyond what you already know
from X₁, to your knowledge about 0. In other words, when you have obtained X₁ and
X2, what you know about is that it is greater than the maximum of X₁ and X2₂. As such,
any reasonable estimator of should be a function of T.
(c) Construct an unbiased estimator of which is a function of T and calculate its
variance. To start with, you should calculate, in that order, the cdf, the pdf, the expected
value, and the variance of T.
(d) Now consider a biased estimator of 0 of the form cT. Find c* that minimizes the MSE
in the class of estimators of the form cT and explicitly verify that the MSE of c*T is less
than that of the estimator constructed in part (c).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6b1ffeba-917b-4621-8d66-7fb659f36c04%2F31b70603-0bae-433d-beae-b05be0e85314%2Fwfkbdg3_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Let X₁,..., Xn be a random sample of size n from the U(0, 0) distribution, where @ > 0
is an unknown parameter. Recall that the pdf fof the U(0, 0) distribution is of the form
f(x) = { 0
-1
if 0 < x < 0
otherwise.
Note that the information about contained in the random sample X₁, Xn equals the
information about contained in the statistic
T = max(X₁, ..',
Xn).
To understand why so, let's think of the random sample as being obtained in a sequential
manner, that is, you obtain X₁ and pause before obtaining X₂. What does X₁ tell you
about? It tells you that > X₁. Once you have X₁ and the information that > X₁,
obtain X₂. If X₂ > X₁, then you know a bit more about 8, namely, 0 > X₂; however, if
X2 X₁, then it does not contribute anything, above and beyond what you already know
from X₁, to your knowledge about 0. In other words, when you have obtained X₁ and
X2, what you know about is that it is greater than the maximum of X₁ and X2₂. As such,
any reasonable estimator of should be a function of T.
(c) Construct an unbiased estimator of which is a function of T and calculate its
variance. To start with, you should calculate, in that order, the cdf, the pdf, the expected
value, and the variance of T.
(d) Now consider a biased estimator of 0 of the form cT. Find c* that minimizes the MSE
in the class of estimators of the form cT and explicitly verify that the MSE of c*T is less
than that of the estimator constructed in part (c).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 40 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman