Let X be the total medical expenses (in 1000s of dollars) incurred by a particular individual during a given year. Although X is a discrete random variable, suppose its distribution is quite well approximated by a continuous distribution with pdf f(x) = k(1 + x/2.5)^-5 for x ≥ 0. (c) What is the expected value of total medical expenses? (Round your answer to the nearest cent.) $ Incorrect: Your answer is incorrect. What is the standard deviation of total medical expenses? (Round your answer to the nearest cent.) $ (d) This individual is covered by an insurance plan that entails a $500 deductible provision (so the first $500 worth of expenses are paid by the individual). Then the plan will pay 80% of any additional expenses exceeding $500, and the maximum payment by the individual (including the deductible amount) is $2500. Let Y denote the amount of this individual's medical expenses paid by the insurance company. What is the expected value of Y? [Hint: First figure out what value of X corresponds to the maximum out-of-pocket expense of $2500. Then write an expression for Y as a function of X (which involves several different pieces) and calculate the expected value of this function.] (Round your answer to the nearest cent.)
Let X be the total medical expenses (in 1000s of dollars) incurred by a particular individual during a given year. Although X is a discrete random variable, suppose its distribution is quite well approximated by a continuous distribution with pdf f(x) = k(1 + x/2.5)^-5 for x ≥ 0. (c) What is the expected value of total medical expenses? (Round your answer to the nearest cent.) $ Incorrect: Your answer is incorrect. What is the standard deviation of total medical expenses? (Round your answer to the nearest cent.) $ (d) This individual is covered by an insurance plan that entails a $500 deductible provision (so the first $500 worth of expenses are paid by the individual). Then the plan will pay 80% of any additional expenses exceeding $500, and the maximum payment by the individual (including the deductible amount) is $2500. Let Y denote the amount of this individual's medical expenses paid by the insurance company. What is the expected value of Y? [Hint: First figure out what value of X corresponds to the maximum out-of-pocket expense of $2500. Then write an expression for Y as a function of X (which involves several different pieces) and calculate the expected value of this function.] (Round your answer to the nearest cent.)
Let X be the total medical expenses (in 1000s of dollars) incurred by a particular individual during a given year. Although X is a discrete random variable, suppose its distribution is quite well approximated by a continuous distribution with pdf f(x) = k(1 + x/2.5)^-5 for x ≥ 0. (c) What is the expected value of total medical expenses? (Round your answer to the nearest cent.) $ Incorrect: Your answer is incorrect. What is the standard deviation of total medical expenses? (Round your answer to the nearest cent.) $ (d) This individual is covered by an insurance plan that entails a $500 deductible provision (so the first $500 worth of expenses are paid by the individual). Then the plan will pay 80% of any additional expenses exceeding $500, and the maximum payment by the individual (including the deductible amount) is $2500. Let Y denote the amount of this individual's medical expenses paid by the insurance company. What is the expected value of Y? [Hint: First figure out what value of X corresponds to the maximum out-of-pocket expense of $2500. Then write an expression for Y as a function of X (which involves several different pieces) and calculate the expected value of this function.] (Round your answer to the nearest cent.)
Let X be the total medical expenses (in 1000s of dollars) incurred by a particular individual during a given year. Although X is a discrete random variable, suppose its distribution is quite well approximated by a continuous distribution with pdf f(x) = k(1 + x/2.5)^-5 for x ≥ 0. (c) What is the expected value of total medical expenses? (Round your answer to the nearest cent.) $
Incorrect: Your answer is incorrect. What is the standard deviation of total medical expenses? (Round your answer to the nearest cent.) $ (d) This individual is covered by an insurance plan that entails a $500 deductible provision (so the first $500 worth of expenses are paid by the individual). Then the plan will pay 80% of any additional expenses exceeding $500, and the maximum payment by the individual (including the deductible amount) is $2500. Let Y denote the amount of this individual's medical expenses paid by the insurance company. What is the expected value of Y? [Hint: First figure out what value of X corresponds to the maximum out-of-pocket expense of $2500. Then write an expression for Y as a function of X (which involves several different pieces) and calculate the expected value of this function.] (Round your answer to the nearest cent.) $
Expression, rule, or law that gives the relationship between an independent variable and dependent variable. Some important types of functions are injective function, surjective function, polynomial function, and inverse function.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.