Let X be the matrix function cos( 2 1) sin (2t) sin (21) -cos( 21) X (t) = Determine if X is a fundamental matrix for system x'= Ax with -2 A= 2 If so, find the solution of the system that satisfies 4 x(0) = cos( 2t) =4 sin (21) sin (21) - cos( 21) cos( 2 1) sin (2t) || b) О sin(2t) + -cos( 2t) Not a fundamental solution set. cos( 21) sin (2t) +4 d) sin (2t) -cos( 2 t) cos( 2t) + 2 sin(2t) sin (2t) - cos( 2 t) e) О

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

ANSWER ASAP PLEASE. WILL RATE IF CORRECT !!!

Let X be the matrix function
cos( 2 1) sin (2t)
sin (2t) -cos( 2 t)
X (t) =
Determine if X is a fundamental matrix for system x'= Ax with
0 -2
A=
2
If so, find the solution of the system that satisfies
4
x(0) =
cos( 2 t)
=4
sin (21)
sin(2t)
-cos( 2t)
cos( 21)
sin (2t)
sin(2t)
+
b) О
-cos( 21)
Not a fundamental solution set.
sin (2t)
+4
cos( 2t)
d)
sin(2t)
-cos( 2t)
cos( 2 t)
sin(2t)
+ 2
sin (2t)
- cos( 2 t)
Transcribed Image Text:Let X be the matrix function cos( 2 1) sin (2t) sin (2t) -cos( 2 t) X (t) = Determine if X is a fundamental matrix for system x'= Ax with 0 -2 A= 2 If so, find the solution of the system that satisfies 4 x(0) = cos( 2 t) =4 sin (21) sin(2t) -cos( 2t) cos( 21) sin (2t) sin(2t) + b) О -cos( 21) Not a fundamental solution set. sin (2t) +4 cos( 2t) d) sin(2t) -cos( 2t) cos( 2 t) sin(2t) + 2 sin (2t) - cos( 2 t)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,