Let x be a random variable that represents white blood cell count per cubic milliliter of whole blood. Assume that x has a distribution that is approximately normal, with mean μ = 6650 and estimated standard deviation σ = 2150. A test result of x < 3500 is an indication of leukopenia. This indicates bone marrow depression that may be the result of a viral infection. (a) What is the probability that, on a single test, x is less than 3500? (Round your answer to four decimal places.) (b) Suppose a doctor uses the average x for two tests taken about a week apart. What can we say about the probability distribution of x? The probability distribution of x is approximately normal with μx = 6650 and σx = 2150. The probability distribution of x is approximately normal with μx = 6650 and σx = 1520.28. The probability distribution of x is not normal. The probability distribution of x is approximately normal with μx = 6650 and σx = 1075.00. What is the probability of x < 3500? (Round your answer to four decimal places.) (c) Repeat part (b) for n = 3 tests taken a week apart. (Round your answer to four decimal places.) (d) Compare your answers to parts (a), (b), and (c). How did the probabilities change as n increased? The probabilities increased as n increased. The probabilities stayed the same as n increased. The probabilities decreased as n increased. If a person had x < 3500 based on three tests, what conclusion would you draw as a doctor or a nurse? It would be a common event for a person to have two or three tests below 3,500 purely by chance. The person probably has leukopenia. It would be a common event for a person to have two or three tests below 3,500 purely by chance. The person probably does not have leukopenia. It would be an extremely rare event for a person to have two or three tests below 3,500 purely by chance. The person probably does not have leukopenia. It would be an extremely rare event for a person to have two or three tests below 3,500 purely by chance. The person probably has leukopenia.
Let x be a random variable that represents white blood cell count per cubic milliliter of whole blood. Assume that x has a distribution that is approximately normal, with mean μ = 6650 and estimated standard deviation σ = 2150. A test result of x < 3500 is an indication of leukopenia. This indicates bone marrow depression that may be the result of a viral infection. (a) What is the probability that, on a single test, x is less than 3500? (Round your answer to four decimal places.) (b) Suppose a doctor uses the average x for two tests taken about a week apart. What can we say about the probability distribution of x? The probability distribution of x is approximately normal with μx = 6650 and σx = 2150. The probability distribution of x is approximately normal with μx = 6650 and σx = 1520.28. The probability distribution of x is not normal. The probability distribution of x is approximately normal with μx = 6650 and σx = 1075.00. What is the probability of x < 3500? (Round your answer to four decimal places.) (c) Repeat part (b) for n = 3 tests taken a week apart. (Round your answer to four decimal places.) (d) Compare your answers to parts (a), (b), and (c). How did the probabilities change as n increased? The probabilities increased as n increased. The probabilities stayed the same as n increased. The probabilities decreased as n increased. If a person had x < 3500 based on three tests, what conclusion would you draw as a doctor or a nurse? It would be a common event for a person to have two or three tests below 3,500 purely by chance. The person probably has leukopenia. It would be a common event for a person to have two or three tests below 3,500 purely by chance. The person probably does not have leukopenia. It would be an extremely rare event for a person to have two or three tests below 3,500 purely by chance. The person probably does not have leukopenia. It would be an extremely rare event for a person to have two or three tests below 3,500 purely by chance. The person probably has leukopenia.
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Topic Video
Question
100%
Let x be a random variable that represents white blood cell count per cubic milliliter of whole blood. Assume that x has a distribution that is approximately normal, with mean μ = 6650 and estimated standard deviation σ = 2150. A test result of x < 3500 is an indication of leukopenia. This indicates bone marrow depression that may be the result of a viral infection.
(a) What is the probability that, on a single test, x is less than 3500? (Round your answer to four decimal places.)
(b) Suppose a doctor uses the average x for two tests taken about a week apart. What can we say about the probability distribution of x?
What is the probability of x < 3500? (Round your answer to four decimal places.)
(c) Repeat part (b) for n = 3 tests taken a week apart. (Round your answer to four decimal places.)
(d) Compare your answers to parts (a), (b), and (c). How did the probabilities change as n increased?
If a person had x < 3500 based on three tests, what conclusion would you draw as a doctor or a nurse?
(b) Suppose a doctor uses the average x for two tests taken about a week apart. What can we say about the probability distribution of x?
The probability distribution of x is approximately normal with μx = 6650 and σx = 2150.
The probability distribution of x is approximately normal with μx = 6650 and σx = 1520.28.
The probability distribution of x is not normal.
The probability distribution of x is approximately normal with μx = 6650 and σx = 1075.00.
What is the probability of x < 3500? (Round your answer to four decimal places.)
(c) Repeat part (b) for n = 3 tests taken a week apart. (Round your answer to four decimal places.)
(d) Compare your answers to parts (a), (b), and (c). How did the probabilities change as n increased?
The probabilities increased as n increased.
The probabilities stayed the same as n increased.
The probabilities decreased as n increased.
If a person had x < 3500 based on three tests, what conclusion would you draw as a doctor or a nurse?
It would be a common event for a person to have two or three tests below 3,500 purely by chance. The person probably has leukopenia.
It would be a common event for a person to have two or three tests below 3,500 purely by chance. The person probably does not have leukopenia. It would be an extremely rare event for a person to have two or three tests below 3,500 purely by chance. The person probably does not have leukopenia.
It would be an extremely rare event for a person to have two or three tests below 3,500 purely by chance. The person probably has leukopenia.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 30 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman