Let X be a continuous random variable with density function √ 3e-3x, 0, (a) Verify that f is a density function. (b) Calculate P(-1 < X < 1). (c) Calculate P(x < 5). (d) Caculate P(2 < X < 4|X<5) f(x) = x > 0 else.

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question

Please see attached image...

**Continuous Random Variable with Density Function Example**

Let \( X \) be a continuous random variable with the following density function \( f(x) \):

\[ f(x) =
\begin{cases} 
3e^{-3x} & x > 0, \\
0 & \text{else.}
\end{cases}
\]

### (a) Verification of the Density Function:

To verify that \( f \) is a density function, we need to check two conditions:
1. \( f(x) \geq 0 \) for all \( x \).
2. The integral of \( f(x) \) over its entire range is equal to 1, i.e., \(\int_{-\infty}^{\infty} f(x) \, dx = 1 \).

### (b) Calculation of \( P(-1 < X < 1) \):

To find \( P(-1 < X < 1) \), we integrate \( f(x) \) from -1 to 1:

\[ P(-1 < X < 1) = \int_{-1}^{1} f(x) \, dx \]

Since \( f(x) = 0 \) for \( x \leq 0 \):

\[ P(-1 < X < 1) = \int_{0}^{1} 3e^{-3x} \, dx \]

Evaluate the integral:

\[ P(-1 < X < 1) = \left[-e^{-3x}\right]_0^1 = -(e^{-3 \cdot 1} - e^{-3 \cdot 0}) = -(e^{-3} - 1) = 1 - e^{-3} \]

### (c) Calculation of \( P(X < 5) \):

To find \( P(X < 5) \), we integrate \( f(x) \) from 0 to 5:

\[ P(X < 5) = \int_{-\infty}^{5} f(x) \, dx = \int_{0}^{5} 3e^{-3x} \, dx \]

Evaluate the integral:

\[ P(X < 5) = \left[-e^{-3x}\right]_0^5 = -(e^{-3 \cdot 5} - e^{-3 \cdot 0}) = -(e^{-15} - 1) =
Transcribed Image Text:**Continuous Random Variable with Density Function Example** Let \( X \) be a continuous random variable with the following density function \( f(x) \): \[ f(x) = \begin{cases} 3e^{-3x} & x > 0, \\ 0 & \text{else.} \end{cases} \] ### (a) Verification of the Density Function: To verify that \( f \) is a density function, we need to check two conditions: 1. \( f(x) \geq 0 \) for all \( x \). 2. The integral of \( f(x) \) over its entire range is equal to 1, i.e., \(\int_{-\infty}^{\infty} f(x) \, dx = 1 \). ### (b) Calculation of \( P(-1 < X < 1) \): To find \( P(-1 < X < 1) \), we integrate \( f(x) \) from -1 to 1: \[ P(-1 < X < 1) = \int_{-1}^{1} f(x) \, dx \] Since \( f(x) = 0 \) for \( x \leq 0 \): \[ P(-1 < X < 1) = \int_{0}^{1} 3e^{-3x} \, dx \] Evaluate the integral: \[ P(-1 < X < 1) = \left[-e^{-3x}\right]_0^1 = -(e^{-3 \cdot 1} - e^{-3 \cdot 0}) = -(e^{-3} - 1) = 1 - e^{-3} \] ### (c) Calculation of \( P(X < 5) \): To find \( P(X < 5) \), we integrate \( f(x) \) from 0 to 5: \[ P(X < 5) = \int_{-\infty}^{5} f(x) \, dx = \int_{0}^{5} 3e^{-3x} \, dx \] Evaluate the integral: \[ P(X < 5) = \left[-e^{-3x}\right]_0^5 = -(e^{-3 \cdot 5} - e^{-3 \cdot 0}) = -(e^{-15} - 1) =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON