Let w2n-1 = Un, W2n-2 = Vn, 22n-1 = Xn and z2n-2 = Yn, implies that Vn+1 – ko Un – ko Vn = µ, (11) Un+1 – kį Vn+1 – kị Un = µ, and Yn+1 – Vo Xn – v Yn = €, (12) Xn+1 – Vị Yn+1 - v¼ Xn = €. It is observe that, the equations (11) and (12) are system of linear non-homogeneous difference equations with constants coefficients. First, we solve the system in (11). Thus, consider (11) is (E – ko) Vn – ko Un (13) (E – k1) Un – ki E V, = µ, (14) where E = A + 1, is the shift operator. Multiplying (13) and (14) by (E – kı) and ko, respectively, (E – ki) (E – ko) Vn – (E – k1) ko Un (E – ki) µ, (15) ko (E – k1) Un – ko ki E Vn ko H. (16) %3D Thus, the combination of (15) and (16) is (E² – (ko + ki + ko ki) E + ko ki) Vn = (1– kı + ko) µ, (E² – O E + ko k1) Vn = (1 – k1 + ko) H, (17) where o = ko + kı + ko k1. Clearly, (17) is linear difference equations from order two and it is easy to obtain the solution, $ + V62 – 4 ko ki $ - Vo2 – 4 ko ki 1- k1 + ko + 1- ko - k1 Vn = A + B (18) 2 since A and B are constants. By Substituting (18) in (13), we give V 6² – 4 ko ki 62 – 4 ko ki Un = A ko - 1 0 - Vø2 – 4 ko k1 ko 1 4 ko ki (19) + B - 1 • (G-) (는)-1)~ 1 - ki + ko -- ko – k , H. ko

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

show me the steps of determine red and all information is here

 
Let w2n-1 = Un, W2n-2 = Vn, %2n–1 =
: Xn and z2n-2 = Yn, implies that
Vn+1 – ko Un – ko Vn = µ,
(11)
Un+1 – kį Vn+1 – kį Un = µ,
and
Yn+1 - Vo Xn – vo Yn = €,
(12)
Xn+1
vị Yn+1 – Vị Xn
= €.
It is observe that, the equations (11) and (12) are system of linear non-homogeneous difference
equations with constants coefficients. First, we solve the system in (11). Thus, consider (11) is
(E – ko) Vn – ko Un
(E – ki) Un – ki E V,
(13)
(14)
where E = A + 1, is the shift operator. Multiplying (13) and (14) by (E – k1) and ko,
respectively,
(E – ki) (E – ko) Vn – (E – k1) ko U,
(E – ki) µ,
(15)
ko (E – k1) Un – ko ki E V,
ko fl.
(16)
Thus, the combination of (15) and (16) is
(E² – (ko + ki + ko k1) E + ko ki) Vn = (1– k1 + ko) µ,
(E² – ø E + ko k'ì) Vn = (1 – k1 + ko) µ,
(17)
where o = ko + k1 + ko k1. Clearly, (17) is linear difference equations from order two and it is
easy to obtain the solution,
1 – kị + ko
1 – ko – k1 )
4 ko k1
- 4 ko ki
V
= A
+ B
(18)
2
since A and B are constants. By Substituting (18) in (13), we give
6? – 4 ko ki
o² – 4 ko k1
1
Un = A
ko
- 1
2
2
1
+ B
ko
– 4 ko k'i
4 ko ki
- 1
(19)
1- kı + ko
- ko – ki
1
H.
+
6
Transcribed Image Text:Let w2n-1 = Un, W2n-2 = Vn, %2n–1 = : Xn and z2n-2 = Yn, implies that Vn+1 – ko Un – ko Vn = µ, (11) Un+1 – kį Vn+1 – kį Un = µ, and Yn+1 - Vo Xn – vo Yn = €, (12) Xn+1 vị Yn+1 – Vị Xn = €. It is observe that, the equations (11) and (12) are system of linear non-homogeneous difference equations with constants coefficients. First, we solve the system in (11). Thus, consider (11) is (E – ko) Vn – ko Un (E – ki) Un – ki E V, (13) (14) where E = A + 1, is the shift operator. Multiplying (13) and (14) by (E – k1) and ko, respectively, (E – ki) (E – ko) Vn – (E – k1) ko U, (E – ki) µ, (15) ko (E – k1) Un – ko ki E V, ko fl. (16) Thus, the combination of (15) and (16) is (E² – (ko + ki + ko k1) E + ko ki) Vn = (1– k1 + ko) µ, (E² – ø E + ko k'ì) Vn = (1 – k1 + ko) µ, (17) where o = ko + k1 + ko k1. Clearly, (17) is linear difference equations from order two and it is easy to obtain the solution, 1 – kị + ko 1 – ko – k1 ) 4 ko k1 - 4 ko ki V = A + B (18) 2 since A and B are constants. By Substituting (18) in (13), we give 6? – 4 ko ki o² – 4 ko k1 1 Un = A ko - 1 2 2 1 + B ko – 4 ko k'i 4 ko ki - 1 (19) 1- kı + ko - ko – ki 1 H. + 6
In this paper, we solve and study the properties of the following system
Wn-p 2 Zn-h
p=0
Wn-p
h=0
E zn-h
h=1
p=1
Wn+1
+u and zn+1 =
+e,
(4)
Zn - €
Wn - 4
where u and e are arbitrary positive real numbers with initial conditions w; and z; for i =
-2, –1,0.
Theorem 2.1. Let {wn, z„}-2 be a solution of (4), then
6+ V – 4 ko k1
A
- V2 – 4 ko ki
1- ki + ko
+
w2n-2
+B
Ty – Oy -
- V2 - 4 ko ki
-4 ko ki
+ V2 – 4 ko ki
V2 - 4 ko ki
A
ko
+ B
ko
w2n-1
- 1
2
2
•((금-1) (는)
1– ko + k1
+ V2 - 4 vo V1
- V2 - 4 VI
1- v + vo
22n-2
+D
%3D
1
+ Vu2 – 4 o VI
gb + V2 – 4 vo vỊ
1
1.
+D
- V2 – 4 v vỊ
V2 – 4 vo vi
22n-1
- v + vo
1- 0 - VI
where A, B, C and D are constants defined as
wo -H
2-1 +z-2
ko
ki =
0 = ko + ki + ko ki,
w-1 + w-2
20 - e
20 - e
w-1 +w-2
, = vo + vi + vo V1,
2-1 +2-2
1-Om
Vo2 – 4 ko k1
-)") (v - 4ko ki – 4) + 2 (wo - (G ) -).
2 62 - 8 ko ki
V2- 4 ko ki
262 - 8 ko ki
1- ko + ki
- ko – k1
(1 – kj + ko
1- k1 - ko
B =
u- w-2
+2
wn-
- vi +u
C =
-2
+ 2
22 - 8 0 vI
- o - VI
) [(는
1- v1 + o
- v0 - v1
1- v + o
2) (V2 – 4vo vI +
+2
2 2
-- 0 - v1
since ko + ki #1 and vo + vı #1 for n e N.
Proof. To obtain the expressions of the general solutions for (4), we rewrite it in the follow
form
2 zn-h
Wn-p
p=1
Wn+1
h=1
Zn+1
and
(5)
1
E Wn-p
1
> Zn-h
h=0
wn -u
p-0
4
Then, we assume that
Wn+1 - l
Wn - H
kn+1 =
1
kn =
2
Wn-p
p=0
Wn-p
p=1
(6)
Zn+1 -€
Zn - €
Vn+1 =
Vn
2
E Zn-h
> Zn-h
h=1
h=0
Substituting (6) in (5), we have
Zn-h
h=1
1
== kn-1,
Vn
kn+1 =
(7)
E Wn-p
p=1
Vn+1 =
= Vn-1.
kn
%3D
Wn -
Hence, we see that
1
ki = -,
Vo
wo - H
20 - €
ko
w-1+ w_2
Vo =
Z-1+ z-2
ko
and
at n = 1, k2 = ko and
V2 = Vo,
at n = 2, k3 = k1 and
V3 = V1,
at n = 3, k4 = ko and
V4 = Vo,
at n = 4, ks = k and
V5 = V1,
(8)
at n = 2 n, k2n = ko and
V2n = Vo,
at n = 2n + 1, k2n+1 = k, and
V2n+1 = V1.
Now, from the relations in (6) we get
Wn = µ+ kn (wn-1 + wn-2) and zn = e + vn (žn-1 + zn-2).
(9)
Using (8) in (9), we have
W2n = H+ ko (w2n-1 + w2n-2),
W2n+1 = µ+ k1 (w2n + w2n-1),
(10)
Z2n = €+ vo (z2n-1 + 2n-2),
22n+1 = €+ V1 (22n + 22n-1).
Transcribed Image Text:In this paper, we solve and study the properties of the following system Wn-p 2 Zn-h p=0 Wn-p h=0 E zn-h h=1 p=1 Wn+1 +u and zn+1 = +e, (4) Zn - € Wn - 4 where u and e are arbitrary positive real numbers with initial conditions w; and z; for i = -2, –1,0. Theorem 2.1. Let {wn, z„}-2 be a solution of (4), then 6+ V – 4 ko k1 A - V2 – 4 ko ki 1- ki + ko + w2n-2 +B Ty – Oy - - V2 - 4 ko ki -4 ko ki + V2 – 4 ko ki V2 - 4 ko ki A ko + B ko w2n-1 - 1 2 2 •((금-1) (는) 1– ko + k1 + V2 - 4 vo V1 - V2 - 4 VI 1- v + vo 22n-2 +D %3D 1 + Vu2 – 4 o VI gb + V2 – 4 vo vỊ 1 1. +D - V2 – 4 v vỊ V2 – 4 vo vi 22n-1 - v + vo 1- 0 - VI where A, B, C and D are constants defined as wo -H 2-1 +z-2 ko ki = 0 = ko + ki + ko ki, w-1 + w-2 20 - e 20 - e w-1 +w-2 , = vo + vi + vo V1, 2-1 +2-2 1-Om Vo2 – 4 ko k1 -)") (v - 4ko ki – 4) + 2 (wo - (G ) -). 2 62 - 8 ko ki V2- 4 ko ki 262 - 8 ko ki 1- ko + ki - ko – k1 (1 – kj + ko 1- k1 - ko B = u- w-2 +2 wn- - vi +u C = -2 + 2 22 - 8 0 vI - o - VI ) [(는 1- v1 + o - v0 - v1 1- v + o 2) (V2 – 4vo vI + +2 2 2 -- 0 - v1 since ko + ki #1 and vo + vı #1 for n e N. Proof. To obtain the expressions of the general solutions for (4), we rewrite it in the follow form 2 zn-h Wn-p p=1 Wn+1 h=1 Zn+1 and (5) 1 E Wn-p 1 > Zn-h h=0 wn -u p-0 4 Then, we assume that Wn+1 - l Wn - H kn+1 = 1 kn = 2 Wn-p p=0 Wn-p p=1 (6) Zn+1 -€ Zn - € Vn+1 = Vn 2 E Zn-h > Zn-h h=1 h=0 Substituting (6) in (5), we have Zn-h h=1 1 == kn-1, Vn kn+1 = (7) E Wn-p p=1 Vn+1 = = Vn-1. kn %3D Wn - Hence, we see that 1 ki = -, Vo wo - H 20 - € ko w-1+ w_2 Vo = Z-1+ z-2 ko and at n = 1, k2 = ko and V2 = Vo, at n = 2, k3 = k1 and V3 = V1, at n = 3, k4 = ko and V4 = Vo, at n = 4, ks = k and V5 = V1, (8) at n = 2 n, k2n = ko and V2n = Vo, at n = 2n + 1, k2n+1 = k, and V2n+1 = V1. Now, from the relations in (6) we get Wn = µ+ kn (wn-1 + wn-2) and zn = e + vn (žn-1 + zn-2). (9) Using (8) in (9), we have W2n = H+ ko (w2n-1 + w2n-2), W2n+1 = µ+ k1 (w2n + w2n-1), (10) Z2n = €+ vo (z2n-1 + 2n-2), 22n+1 = €+ V1 (22n + 22n-1).
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,