Let w,=(1,0,0,1) and Let W={w | w•w, w w, denotes the dot product of w;=(-1,0,0,1). w.w2 = 0}, where = W, & w. (a) Show that W is a vector space (over the field R). (b) Find the basis of W. (c) Find the dimension of W. (d) Is the answer to part (c) unique? k

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please show work 

Let w,=(1,0,0,1) and w,=(-1,0,0,1).
Let W={w | w•w1
w w denotes the dot product of
W, & w.
(a) Show that W is a vector space (over the
field R).
(b) Find the basis of W.
(c) Find the dimension of W.
(d) Is the answer to part (c) unique?
w.W2
w w, = 0}, where
k
Transcribed Image Text:Let w,=(1,0,0,1) and w,=(-1,0,0,1). Let W={w | w•w1 w w denotes the dot product of W, & w. (a) Show that W is a vector space (over the field R). (b) Find the basis of W. (c) Find the dimension of W. (d) Is the answer to part (c) unique? w.W2 w w, = 0}, where k
Expert Solution
Step 1

Given vectors are w1=1,0,0,1, w2=-1,0,0,1.

Let W=w| w.w1=w.w2=0.

Let w=a,b,c,dW. Therefore:

                        w.w1=0a,b,c,d1,0,0,1=0a+d=0a=-d                            1

and:

                       w.w1=0a,b,c,d-1,0,0,1=0-a+d=0a=d                                2

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,