Let W1 and W2 be two subspaces of a finite dimensional vector space V over a field F. 1. Show that W1n W2 is a vector subspace of V, but that W¡u W2 need not be a vector subspace in general.
Let W1 and W2 be two subspaces of a finite dimensional vector space V over a field F. 1. Show that W1n W2 is a vector subspace of V, but that W¡u W2 need not be a vector subspace in general.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Let W and W, be two subspaces of a finite dimensional vector space V over a field F.
1. Show that W1n W2 is a vector subspace of V, but that W1 U W2 need not be a vector subspace in
general.
2. Show that
dim(W1) + dim(W2) – dim(W1 n W2) = dim(W1 + W2),
where W1 + W2 just denotes the span of W1 u W2 in V. (Hint: Apply the rank nullity theorem to the natural
map Wi O W2 → V.)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4a2b9261-2a0d-4e40-836c-2d268431eab4%2F7ab8c53f-02ec-4e87-b2e4-53bfa029c83f%2Fd4t3l77_processed.png&w=3840&q=75)
Transcribed Image Text:Let W and W, be two subspaces of a finite dimensional vector space V over a field F.
1. Show that W1n W2 is a vector subspace of V, but that W1 U W2 need not be a vector subspace in
general.
2. Show that
dim(W1) + dim(W2) – dim(W1 n W2) = dim(W1 + W2),
where W1 + W2 just denotes the span of W1 u W2 in V. (Hint: Apply the rank nullity theorem to the natural
map Wi O W2 → V.)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)