Let V1, V2, V3 be a basis of a vector space V over R. Is V1 + V2, V2 + 2v3, v3 + 3v₁ also a basis? What about over the field F7 of 7 elements?
Let V1, V2, V3 be a basis of a vector space V over R. Is V1 + V2, V2 + 2v3, v3 + 3v₁ also a basis? What about over the field F7 of 7 elements?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Let V1, V2, V3 be a basis of a vector space V over R.
Is v₁ + V2, V2 + 2v3, v3 + 3v₁ also a basis?
What about over the field F7 of 7 elements?
Select one:
Yes over R, no over F7
Yes for both fields
O No over R, yes over F7
O This depends on the specific v₁, V2, V3 as elements of V
No for both fields](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0de9773e-39c1-4df6-a7d6-864501c7f552%2F883fa73c-f919-4322-8cb3-512978ecf956%2Fx33qjp9_processed.png&w=3840&q=75)
Transcribed Image Text:Let V1, V2, V3 be a basis of a vector space V over R.
Is v₁ + V2, V2 + 2v3, v3 + 3v₁ also a basis?
What about over the field F7 of 7 elements?
Select one:
Yes over R, no over F7
Yes for both fields
O No over R, yes over F7
O This depends on the specific v₁, V2, V3 as elements of V
No for both fields
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Solution
Given: Let and
be a basis of vector space
over
We have to check is also a basis or not.
and also what about over the field of
elements ?
Step by step
Solved in 6 steps with 53 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)