Let V be an n -dimensional vector space and let W C V be an m -dimensional subspace. For each v E V, define Sy = {v+w:w E W}, and let = {Sv : v e V}. Define addition in U so that for any x, y E V Sx + Sy = Sx+y d define scalar multiplication so that for any k ER kSx = Skx can be shown that U is vector space (you do not need to prove this). Explain why the zero vector in U is a subspace of V. O Prove, by induction, that for any k >1 and any choice of c1,..., Ck ER and x1,..., X E V, if v = ECx; then Sy = c:Sx, i=1 What is dim(U)? (Hint: Consider a basis for V which contains a basis for W, and use it to construct a basis for U.)
Let V be an n -dimensional vector space and let W C V be an m -dimensional subspace. For each v E V, define Sy = {v+w:w E W}, and let = {Sv : v e V}. Define addition in U so that for any x, y E V Sx + Sy = Sx+y d define scalar multiplication so that for any k ER kSx = Skx can be shown that U is vector space (you do not need to prove this). Explain why the zero vector in U is a subspace of V. O Prove, by induction, that for any k >1 and any choice of c1,..., Ck ER and x1,..., X E V, if v = ECx; then Sy = c:Sx, i=1 What is dim(U)? (Hint: Consider a basis for V which contains a basis for W, and use it to construct a basis for U.)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
Need help with part (c). Thank you :)

Transcribed Image Text:1. Let V be an n -dimensional vector space and let W C V be an m -dimensional subspace. For each v E V, define Sy = {v+w:w€ W}, and let
U = {S, : v E V}. Define addition in U so that for any x, y E V
Sx + Sy = Sx+y
||
and define scalar multiplication so that for any k E R
kSx
Skx
It can be shown that U is vector space (you do not need to prove this).
(a) Explain why the zero vector in U is a subspace of V.
(b) Prove, by induction, that for any k > 1 and any choice of c1, ..., Ck ER and x1, ..., X E V, if v = E C;X; then
Sy = c;Sx,
i=1
(c) What is dim(U)? (Hint: Consider a basis for V which contains a basis for W, and use it to construct a basis for U.)
(d) Let T: V →V' be a linear transformation. Let W
ker(T), let U be as defined above, and for each v E V define
=
$(Sv) = T(v) (*)
Since it is possible for Sy = Sw with v w, it is not immediately clear that o is well defined. Prove that (*) does indeed define a function
$: U → V', by showing that for any x, y E V satisfying Sx = Sy we have (Sx) = ¢(Sy).
(e) Show that ø is linear.
(f) For what values of dim(V') is ø injective?
(g) For what values of dim(V') is ø surjective?
||
W
||
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

