Let V be a bounded region of space and let ø be an electrostatic potential that is source free in this region, so that V²ø = 0 throughout V. Suppose that for all a lying on the boundary S = av, we have ø(T) = –f(F)n · Vó(F) where f is a positive function (f(ã) > 0) and în is the outward pointing normal. Show that O = 0 throughout V.
Let V be a bounded region of space and let ø be an electrostatic potential that is source free in this region, so that V²ø = 0 throughout V. Suppose that for all a lying on the boundary S = av, we have ø(T) = –f(F)n · Vó(F) where f is a positive function (f(ã) > 0) and în is the outward pointing normal. Show that O = 0 throughout V.
Related questions
Question
electrostatics problem as picture
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images