Let V₁ = -3 and V₂ = Av= පස ද.. [8] 3 be eigenvectors of the matrix A which correspond to the eigenvalues A₁ = -3 and 2 = 2, respectively. Let v = -4v₁ + 4v₂. Find Av. 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Eigenvalues and Eigenvectors

**Problem Statement:**

Let \(\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\) and \(\mathbf{v}_2 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}\) be eigenvectors of the matrix \( A \) which correspond to the eigenvalues \(\lambda_1 = -3 \) and \(\lambda_2 = 2 \), respectively.

Let \(\mathbf{v} = -4\mathbf{v}_1 + 4\mathbf{v}_2\). Find \( A\mathbf{v} \).

**Solution:**

Given:
\[
\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}
\]

Eigenvalues:
\[
\lambda_1 = -3, \quad \lambda_2 = 2
\]

Vector \(\mathbf{v}\):
\[
\mathbf{v} = -4\mathbf{v}_1 + 4\mathbf{v}_2
\]
\[
\mathbf{v} = -4 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 4 \begin{bmatrix} 3 \\ 0 \end{bmatrix}
\]

To find \( A\mathbf{v} \):

The image displays an equation with placeholders indicating each element of the resulting vector \(A \mathbf{v}\):

\[
A\mathbf{v} = \begin{bmatrix} \boxed{\phantom{0}} \\ \boxed{\phantom{0}} \\ \boxed{\phantom{0}} \end{bmatrix}
\]

Where the boxed areas represent the elements of the resulting vector after calculating \(A\mathbf{v}\).
Transcribed Image Text:### Eigenvalues and Eigenvectors **Problem Statement:** Let \(\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\) and \(\mathbf{v}_2 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}\) be eigenvectors of the matrix \( A \) which correspond to the eigenvalues \(\lambda_1 = -3 \) and \(\lambda_2 = 2 \), respectively. Let \(\mathbf{v} = -4\mathbf{v}_1 + 4\mathbf{v}_2\). Find \( A\mathbf{v} \). **Solution:** Given: \[ \mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \] Eigenvalues: \[ \lambda_1 = -3, \quad \lambda_2 = 2 \] Vector \(\mathbf{v}\): \[ \mathbf{v} = -4\mathbf{v}_1 + 4\mathbf{v}_2 \] \[ \mathbf{v} = -4 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 4 \begin{bmatrix} 3 \\ 0 \end{bmatrix} \] To find \( A\mathbf{v} \): The image displays an equation with placeholders indicating each element of the resulting vector \(A \mathbf{v}\): \[ A\mathbf{v} = \begin{bmatrix} \boxed{\phantom{0}} \\ \boxed{\phantom{0}} \\ \boxed{\phantom{0}} \end{bmatrix} \] Where the boxed areas represent the elements of the resulting vector after calculating \(A\mathbf{v}\).
Expert Solution
steps

Step by step

Solved in 3 steps with 7 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,