Let ux,t=XxYy Given uxx+ux+uyy=Oux,y=XxYyux=X'xYyuxx=X"xYyuyy=XxY"y..uxx+ux+uyy=0⇒X"xYy+X'xYy+XxY"'y=0⇒X"x+X'XYy =-XXY"'y⇒X"x+X'xXx=-Y"yyy Let, X"X+X'XXX=-Y"yyy=X Case i: λ=0 Y"'y=0⇒Y'y=a⇒Yy=ay+b X"X+X'X=0 The characteristic function is D2+D=0⇒DD+1=0=D=0,-1 Therefore Xx=c+de-xux,t=a+byc+de-x Case ii: λ=µ2 Y"'y=-u2Yy⇒Yx=acosµy+bsinµyX"x+X'x-μ2xx=0 The characteristic function is D2+D-u2=0..D=-1+1+4u22 =-12+W w=1+4µ22 Xx=ce-12+wx+de-12-wxux,y=ce-12+wx+de-12- wxacosμy+bsinuy Case (iii): λ=-μ2 Y"'y=μ2Yy⇒Yx=aeµy+be-µyX"x+X'x+µ2Xx=0 D2+D-u2=0..D=-1±1-4µ22 For 1-4μ2>0
Let ux,t=XxYy Given uxx+ux+uyy=Oux,y=XxYyux=X'xYyuxx=X"xYyuyy=XxY"y..uxx+ux+uyy=0⇒X"xYy+X'xYy+XxY"'y=0⇒X"x+X'XYy =-XXY"'y⇒X"x+X'xXx=-Y"yyy Let, X"X+X'XXX=-Y"yyy=X Case i: λ=0 Y"'y=0⇒Y'y=a⇒Yy=ay+b X"X+X'X=0 The characteristic function is D2+D=0⇒DD+1=0=D=0,-1 Therefore Xx=c+de-xux,t=a+byc+de-x Case ii: λ=µ2 Y"'y=-u2Yy⇒Yx=acosµy+bsinµyX"x+X'x-μ2xx=0 The characteristic function is D2+D-u2=0..D=-1+1+4u22 =-12+W w=1+4µ22 Xx=ce-12+wx+de-12-wxux,y=ce-12+wx+de-12- wxacosμy+bsinuy Case (iii): λ=-μ2 Y"'y=μ2Yy⇒Yx=aeµy+be-µyX"x+X'x+µ2Xx=0 D2+D-u2=0..D=-1±1-4µ22 For 1-4μ2>0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Hello! Please, could you write this out the previous explanation on paper, because this is how I see it and it is very confusing, I don't understand, and I cannot follow along!
This is why I had specified in the beginning question about that!!
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 7 steps with 6 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,