Let ux,t=XxYy Given uxx+ux+uyy=Oux,y=XxYyux=X'xYyuxx=X"xYyuyy=XxY"y..uxx+ux+uyy=0⇒X"xYy+X'xYy+XxY"'y=0⇒X"x+X'XYy =-XXY"'y⇒X"x+X'xXx=-Y"yyy Let, X"X+X'XXX=-Y"yyy=X Case i: λ=0 Y"'y=0⇒Y'y=a⇒Yy=ay+b X"X+X'X=0 The characteristic function is D2+D=0⇒DD+1=0=D=0,-1 Therefore Xx=c+de-xux,t=a+byc+de-x Case ii: λ=µ2 Y"'y=-u2Yy⇒Yx=acosµy+bsinµyX"x+X'x-μ2xx=0 The characteristic function is D2+D-u2=0..D=-1+1+4u22 =-12+W w=1+4µ22 Xx=ce-12+wx+de-12-wxux,y=ce-12+wx+de-12- wxacosμy+bsinuy Case (iii): λ=-μ2 Y"'y=μ2Yy⇒Yx=aeµy+be-µyX"x+X'x+µ2Xx=0 D2+D-u2=0..D=-1±1-4µ22 For 1-4μ2>0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Hello! Please, could you write this out the previous explanation on paper, because this is how I see it and it is very confusing, I don't understand, and I cannot follow along!

This is why I had specified in the beginning question about that!!

The text appears to be a mathematical solution involving differential equations and the use of characteristic functions. Here is a transcription suitable for an educational website:

---

**Given:**

\[ u_{xx} + u_x + u_{yy} = 0 \]

Substitute variables:

\[ ux, t= XxYy \]

Rewriting, we have:

\[ y = XxYy; \quad u_{xx} + u_{yy} = 0 \Rightarrow X'' xY + X'xY' y + XxY'' y = 0 \]

This leads to:

\[ X'' + X' xX'' yY = \lambda \]

**Case i: \( \lambda = 0 \)**

\[ Y'' y = 0 \Rightarrow Y = a \Rightarrow Y = ay + b \]

\[ X'' x + X' x = 0 \]

The characteristic function becomes:

\[ D^2 + D = 0 \Rightarrow DD + 1 = 0 \Rightarrow D = 0, -1 \]

Therefore:

\[ Xx = c + de^{-x}, \quad t = a + byc + de^{-x} \]

**Case ii: \( \lambda = \mu^2 \)**

\[ Y'' y - \mu^2Y y = Yx = a \cos \mu y + b \sin \mu y \Rightarrow X'' x + X' x - \mu^2X x = 0 \]

The characteristic function is:

\[ D^2 + D - \mu^2 = 0 \Rightarrow D = -1 \pm 1 + 4 \mu^2 \]

Solving gives:

\[ -12 + w \quad \text{where} \quad w = 1 + 4 \mu^2 \]

Thus:

\[ Xx = ce^{-12 + wx} + de^{-12 - wx}UX, \quad y = ce^{-12 + wx} + de^{-12 - wx} a \cos \mu y + b \sin \mu y \]

**Case (iii): \( \lambda = -\mu^2 \)**

\[ Y'' y + 2Y y = Yx = ae^{\mu y} + be^{-\mu y} \Rightarrow X'' x + X' x + \mu^2 Xx =
Transcribed Image Text:The text appears to be a mathematical solution involving differential equations and the use of characteristic functions. Here is a transcription suitable for an educational website: --- **Given:** \[ u_{xx} + u_x + u_{yy} = 0 \] Substitute variables: \[ ux, t= XxYy \] Rewriting, we have: \[ y = XxYy; \quad u_{xx} + u_{yy} = 0 \Rightarrow X'' xY + X'xY' y + XxY'' y = 0 \] This leads to: \[ X'' + X' xX'' yY = \lambda \] **Case i: \( \lambda = 0 \)** \[ Y'' y = 0 \Rightarrow Y = a \Rightarrow Y = ay + b \] \[ X'' x + X' x = 0 \] The characteristic function becomes: \[ D^2 + D = 0 \Rightarrow DD + 1 = 0 \Rightarrow D = 0, -1 \] Therefore: \[ Xx = c + de^{-x}, \quad t = a + byc + de^{-x} \] **Case ii: \( \lambda = \mu^2 \)** \[ Y'' y - \mu^2Y y = Yx = a \cos \mu y + b \sin \mu y \Rightarrow X'' x + X' x - \mu^2X x = 0 \] The characteristic function is: \[ D^2 + D - \mu^2 = 0 \Rightarrow D = -1 \pm 1 + 4 \mu^2 \] Solving gives: \[ -12 + w \quad \text{where} \quad w = 1 + 4 \mu^2 \] Thus: \[ Xx = ce^{-12 + wx} + de^{-12 - wx}UX, \quad y = ce^{-12 + wx} + de^{-12 - wx} a \cos \mu y + b \sin \mu y \] **Case (iii): \( \lambda = -\mu^2 \)** \[ Y'' y + 2Y y = Yx = ae^{\mu y} + be^{-\mu y} \Rightarrow X'' x + X' x + \mu^2 Xx =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 6 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,