Let U=span{uq ,U2,U3} Û=span {u, ,u,,u,} where ū,=(1,0,0,0), ū,=(0,1,1,0), ū,=(0,1,1,1) and u,=(1,0,0,1), u,=(1,1,0,0), u,=(0,0,1,1). Show that U & Û the field R). U2, U3) 6. are vector spaces (over

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please show work 

U=span{ū,ū,,ū, and
Û=span {u ,u,,ú} where
ū,=(1,0,0,0), ū,=(0,1,1,0), ū,=(0,1,1,1) and
ů,=(1,0,0,1), u=(1,1,0,0), u=(0,0,1,1).
2. Let
%3D
%3D
Show that
U & Û
are vector spaces (over
the field R).
Transcribed Image Text:U=span{ū,ū,,ū, and Û=span {u ,u,,ú} where ū,=(1,0,0,0), ū,=(0,1,1,0), ū,=(0,1,1,1) and ů,=(1,0,0,1), u=(1,1,0,0), u=(0,0,1,1). 2. Let %3D %3D Show that U & Û are vector spaces (over the field R).
Expert Solution
Step 1

(a)

Given vectors are u1^=1,0,0,1,u2^=1,1,0,0,u3^=0,0,1,1.

 

Consider U^=spanu1^, u2^, u3^.

Clearly the set U^=spanu1^, u2^, u3^ is non empty as three given vectors are already there. Since the set

U^=spanu1^, u2^, u3^ is already subset of a vector space 4, it is enough to show that the set 

U^=spanu1^, u2^, u3^ is closed under vector addition and scalar multiplication.

Let x^, y^U^ be arbitrary vectors. Therefore they can be written as:

                          x^=au1^+bu2^+cu3^y^=lu1^+mu2^+nu3^

Therefore there vector addition:

              x^+y^=au1^+bu2^+cu3^+lu1^+mu2^+nu3^=a+lu1^+b+mu2^+c+nu3^U^

Hence the set U^=spanu1^, u2^, u3^ is closed under vector addition.

Let k be an arbitrary scalar. Therefore there scalar multiplication can be written as:

                   kx^=kau1^+bu2^+cu3^=kau1^+kbu2^+kcu3^U^

Hence the set U^=spanu1^, u2^, u3^ is closed under scalar multiplication.

Hence the set U^=spanu1^, u2^, u3^ is a vector space.

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,