Let U=span u, ,ū2, ūz and Ü=span{ú, ,ú2,úz where ü,=(1,0,0,0), ủ,=(0,1,1,0), ủ,=(0,1,1,1) and u,=(1,0,0,1), ủ,=(1,1,0,0), u,=(0,0,1,1). Show that UnÛ ± Ø, i.e. given some üeU, describe üeÛ in terms of üeU, explicitly.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \( U = \text{span}(\vec{u}_1, \vec{u}_2, \vec{u}_3) \) and
\( \hat{U} = \text{span}(\vec{\hat{u}}_1, \vec{\hat{u}}_2, \vec{\hat{u}}_3) \) where

\[
\vec{u}_1 = (1, 0, 0, 0), \quad \vec{u}_2 = (0, 1, 1, 0), \quad \vec{u}_3 = (0, 1, 1, 1)
\]

and

\[
\vec{\hat{u}}_1 = (1, 0, 0, 1), \quad \vec{\hat{u}}_2 = (1, 1, 0, 0), \quad \vec{\hat{u}}_3 = (0, 0, 1, 1).
\]

Show that \( U \cap \hat{U} \neq \emptyset \), i.e., given some \( \vec{u} \in U \), describe \( \vec{\hat{u}} \in \hat{U} \) in terms of \( \vec{u} \), explicitly.
Transcribed Image Text:Let \( U = \text{span}(\vec{u}_1, \vec{u}_2, \vec{u}_3) \) and \( \hat{U} = \text{span}(\vec{\hat{u}}_1, \vec{\hat{u}}_2, \vec{\hat{u}}_3) \) where \[ \vec{u}_1 = (1, 0, 0, 0), \quad \vec{u}_2 = (0, 1, 1, 0), \quad \vec{u}_3 = (0, 1, 1, 1) \] and \[ \vec{\hat{u}}_1 = (1, 0, 0, 1), \quad \vec{\hat{u}}_2 = (1, 1, 0, 0), \quad \vec{\hat{u}}_3 = (0, 0, 1, 1). \] Show that \( U \cap \hat{U} \neq \emptyset \), i.e., given some \( \vec{u} \in U \), describe \( \vec{\hat{u}} \in \hat{U} \) in terms of \( \vec{u} \), explicitly.
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,