Let U={1,2.3,4.5.6.7,8,9,10} be the universal set and A={1,2,3,4,5,6}, B={1,3,5,8,10} Then P(A-B) O (0.(1),(3),(5),{1,3),(1,5),(3,5),U) O (0,(2).(4).(6),(2,4),(2,6).(4,6).(2,4,6}) O 64 O (0.(2),(4).(6),(2,4).(2,6).(4,6),U) O None of these O (0.(1),(3},(5)(1,3)(1,5).(3.5).(1.3,5))

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please solve this question in discrete math quickly
Let U={1,2,3,4.5.6.7.8,9,10} be the universal set and A={1,2,3,4,5,6}, B={1,3,5,8,10}. Then P(A B)
O (0.(1),(3),(5).(1,3),(1,5),(3,5),U)
(0,(2).(4),(6).(2,4).(2,6),(4,6).(2,4,6})
64
(0.(2),(4).(6).(2,4).(2,6).(4,6),U)
None of these
O (0,(1),(3},(5),(1,3).(1,5).(3,5).(13,5))
Transcribed Image Text:Let U={1,2,3,4.5.6.7.8,9,10} be the universal set and A={1,2,3,4,5,6}, B={1,3,5,8,10}. Then P(A B) O (0.(1),(3),(5).(1,3),(1,5),(3,5),U) (0,(2).(4),(6).(2,4).(2,6),(4,6).(2,4,6}) 64 (0.(2),(4).(6).(2,4).(2,6).(4,6),U) None of these O (0,(1),(3},(5),(1,3).(1,5).(3,5).(13,5))
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Fractions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,