Let U₁, U2, U3 – be the following subspaces of Rª U₁={a, b, c, d)=R4| ²b=c; a=d=0}; U2={(a, b, c, d)=R4| a - b + 3¹c + 4;d=0, -a +b - 3¹c - 4 d=0}; U3= {a, b, c, d)=R4| 2a − 3b − 2 c - d=0, a + 2b + 0c + .² d=0 }; and the dimension () of U₁. Sub-Task 1. Find a basis Sub-Task 2. Find a basis () and the dimension () of U₂. Sub-Task 3. Find a basis (^.¯ _ `) and the dimension (´¸ ¯`) of U3. Sub-Task 4. Whether Rª=U₁+U2, (provide a justification). (. ). Whether R¹=U₁U2, (provide a justification). (~ 1 Sub-Task 5. Whether Rª=U₁+U3, (provide a justification) ^ Whether Rª=U₁ÐU3, (provide a justification). (^´ ^^). Sub-Task 6. Whether Rª=U2+U3, (provide a justification). (u. (provide a justification). (¯¸). *). Whether R4=U₂ÐU3,

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let U1, U2, U3 – be the following subspaces of R+
Ui={a, b, c, d)eR*| 2b=c; a=d=0};
Uz={(a, b, c, d)eR*| a - b+ 3•c + 4rd=0, -a +b - 3c - 4 d=0};
U3= {a, b, c, d)eR*| 2a – 3:b – 2 c - d=0, a + 2b + Oc +,2 d=0 };
с,
Sub-Task 1. Find a basis i
and the dimension ( ) of U1.
Sub-Task 2. Find a basis (v
*) and the dimension (
f U2.
Sub-Task 3. Find a basis .- and the dimension (
;of U3.
Sub-Task 4. Whether R=U1+U2, (provide a justification). ., '). Whether R=U1OU2,
(provide a justification). (-
:) Whether R=U¡©U3,
Sub-Task 5. Whether R=U1+U3, (provide a justification
(provide a justification). ( ).
Sub-Task 6. Whether R=U2+U3, (provide a justification). (u. ). Whether Rª=U2©U3,
(provide a justification). (*. ').
Transcribed Image Text:Let U1, U2, U3 – be the following subspaces of R+ Ui={a, b, c, d)eR*| 2b=c; a=d=0}; Uz={(a, b, c, d)eR*| a - b+ 3•c + 4rd=0, -a +b - 3c - 4 d=0}; U3= {a, b, c, d)eR*| 2a – 3:b – 2 c - d=0, a + 2b + Oc +,2 d=0 }; с, Sub-Task 1. Find a basis i and the dimension ( ) of U1. Sub-Task 2. Find a basis (v *) and the dimension ( f U2. Sub-Task 3. Find a basis .- and the dimension ( ;of U3. Sub-Task 4. Whether R=U1+U2, (provide a justification). ., '). Whether R=U1OU2, (provide a justification). (- :) Whether R=U¡©U3, Sub-Task 5. Whether R=U1+U3, (provide a justification (provide a justification). ( ). Sub-Task 6. Whether R=U2+U3, (provide a justification). (u. ). Whether Rª=U2©U3, (provide a justification). (*. ').
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,