Let U be a vector function of position in R3 with continuous second partial deriva- tives. We write (U₁, U2, U3) for the components of U. (a) Show that ¹⁄▼ (Ü · Ü) – Ü × (▼ × Ü) = (Ũ · ▼) Ū, where ((UV)U), = U₁ (b) We define the vector function of position, by setting = V × . If the condition V U = 0 holds true, show that ▼ × ((Ū · ▼) Ú) = (Ū · ▼) Ñ — (Ñ · ▼) Ú. . (Hint: The representation of (UV) U from the first part might be useful.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2. Let U be a vector function of position in R³ with continuous second partial deriva-
tives. We write (U₁, U2, U3) for the components of U.
(a) Show that
V (U • U) – Ü × (▼ × Ü) = (U · ▼) Ū,
(V
where ((UV) U), = U₁
(b) We define the vector function of position, by setting = V × . If the
condition V U = 0 holds true, show that
▼ × ((Ū · V) Ű) = (Ũ · V) Ñ - (Ñ· ▼) ū.
(Hint: The representation of (UV) U from the first part might be useful.)
Transcribed Image Text:2. Let U be a vector function of position in R³ with continuous second partial deriva- tives. We write (U₁, U2, U3) for the components of U. (a) Show that V (U • U) – Ü × (▼ × Ü) = (U · ▼) Ū, (V where ((UV) U), = U₁ (b) We define the vector function of position, by setting = V × . If the condition V U = 0 holds true, show that ▼ × ((Ū · V) Ű) = (Ũ · V) Ñ - (Ñ· ▼) ū. (Hint: The representation of (UV) U from the first part might be useful.)
Expert Solution
steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,