Let u = (1, 1, 8). Find ||||. Use that to find a unit vector that points in the direction of u. Write your answers in exact form, using sqrt() to indicate square roots. Enter the vector using < and > as enclosing brackets. ||ū|| = Unit vector that points in the direction of u:

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
To solve for the magnitude of vector \( \vec{u} \) and a corresponding unit vector, follow these steps:

Given:
\[ \vec{u} = \langle -1, -1, 8 \rangle \]

**Step 1: Find the magnitude \( \|\vec{u}\| \)**

The magnitude of a vector \( \vec{u} = \langle u_1, u_2, u_3 \rangle \) is calculated using the formula:
\[ \|\vec{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2} \]

Here, \( u_1 = -1 \), \( u_2 = -1 \), \( u_3 = 8 \). 

So,
\[ \|\vec{u}\| = \sqrt{(-1)^2 + (-1)^2 + 8^2} \]
\[ \|\vec{u}\| = \sqrt{1 + 1 + 64} \]
\[ \|\vec{u}\| = \sqrt{66} \]

**Step 2: Find a unit vector in the direction of \( \vec{u} \)**

A unit vector in the direction of \( \vec{u} \) is given by:
\[ \hat{u} = \frac{\vec{u}}{\|\vec{u}\|} \]
\[ \hat{u} = \frac{\langle -1, -1, 8 \rangle}{\sqrt{66}} \]

Thus, the unit vector is:
\[ \hat{u} = \left\langle \frac{-1}{\sqrt{66}}, \frac{-1}{\sqrt{66}}, \frac{8}{\sqrt{66}} \right\rangle \]

**Final Answers:**

Magnitude \( \|\vec{u}\| \):
\[ \|\vec{u}\| = \sqrt{66} \]

Unit vector in the direction of \( \vec{u} \):
\[ \left\langle \frac{-1}{\sqrt{66}}, \frac{-1}{\sqrt{66}}, \frac{8}{\sqrt{66}} \right\rangle \]
Transcribed Image Text:To solve for the magnitude of vector \( \vec{u} \) and a corresponding unit vector, follow these steps: Given: \[ \vec{u} = \langle -1, -1, 8 \rangle \] **Step 1: Find the magnitude \( \|\vec{u}\| \)** The magnitude of a vector \( \vec{u} = \langle u_1, u_2, u_3 \rangle \) is calculated using the formula: \[ \|\vec{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2} \] Here, \( u_1 = -1 \), \( u_2 = -1 \), \( u_3 = 8 \). So, \[ \|\vec{u}\| = \sqrt{(-1)^2 + (-1)^2 + 8^2} \] \[ \|\vec{u}\| = \sqrt{1 + 1 + 64} \] \[ \|\vec{u}\| = \sqrt{66} \] **Step 2: Find a unit vector in the direction of \( \vec{u} \)** A unit vector in the direction of \( \vec{u} \) is given by: \[ \hat{u} = \frac{\vec{u}}{\|\vec{u}\|} \] \[ \hat{u} = \frac{\langle -1, -1, 8 \rangle}{\sqrt{66}} \] Thus, the unit vector is: \[ \hat{u} = \left\langle \frac{-1}{\sqrt{66}}, \frac{-1}{\sqrt{66}}, \frac{8}{\sqrt{66}} \right\rangle \] **Final Answers:** Magnitude \( \|\vec{u}\| \): \[ \|\vec{u}\| = \sqrt{66} \] Unit vector in the direction of \( \vec{u} \): \[ \left\langle \frac{-1}{\sqrt{66}}, \frac{-1}{\sqrt{66}}, \frac{8}{\sqrt{66}} \right\rangle \]
Expert Solution
steps

Step by step

Solved in 3 steps with 13 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,