Let u = (1, 1, 8). Find ||||. Use that to find a unit vector that points in the direction of u. Write your answers in exact form, using sqrt() to indicate square roots. Enter the vector using < and > as enclosing brackets. ||ū|| = Unit vector that points in the direction of u:
Let u = (1, 1, 8). Find ||||. Use that to find a unit vector that points in the direction of u. Write your answers in exact form, using sqrt() to indicate square roots. Enter the vector using < and > as enclosing brackets. ||ū|| = Unit vector that points in the direction of u:
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![To solve for the magnitude of vector \( \vec{u} \) and a corresponding unit vector, follow these steps:
Given:
\[ \vec{u} = \langle -1, -1, 8 \rangle \]
**Step 1: Find the magnitude \( \|\vec{u}\| \)**
The magnitude of a vector \( \vec{u} = \langle u_1, u_2, u_3 \rangle \) is calculated using the formula:
\[ \|\vec{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2} \]
Here, \( u_1 = -1 \), \( u_2 = -1 \), \( u_3 = 8 \).
So,
\[ \|\vec{u}\| = \sqrt{(-1)^2 + (-1)^2 + 8^2} \]
\[ \|\vec{u}\| = \sqrt{1 + 1 + 64} \]
\[ \|\vec{u}\| = \sqrt{66} \]
**Step 2: Find a unit vector in the direction of \( \vec{u} \)**
A unit vector in the direction of \( \vec{u} \) is given by:
\[ \hat{u} = \frac{\vec{u}}{\|\vec{u}\|} \]
\[ \hat{u} = \frac{\langle -1, -1, 8 \rangle}{\sqrt{66}} \]
Thus, the unit vector is:
\[ \hat{u} = \left\langle \frac{-1}{\sqrt{66}}, \frac{-1}{\sqrt{66}}, \frac{8}{\sqrt{66}} \right\rangle \]
**Final Answers:**
Magnitude \( \|\vec{u}\| \):
\[ \|\vec{u}\| = \sqrt{66} \]
Unit vector in the direction of \( \vec{u} \):
\[ \left\langle \frac{-1}{\sqrt{66}}, \frac{-1}{\sqrt{66}}, \frac{8}{\sqrt{66}} \right\rangle \]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0fdef185-de8b-42f5-933e-8018dcf36541%2Ff7e5e801-3a94-4a81-bca3-01ecec3315c5%2Fbaq1jnv_processed.png&w=3840&q=75)
Transcribed Image Text:To solve for the magnitude of vector \( \vec{u} \) and a corresponding unit vector, follow these steps:
Given:
\[ \vec{u} = \langle -1, -1, 8 \rangle \]
**Step 1: Find the magnitude \( \|\vec{u}\| \)**
The magnitude of a vector \( \vec{u} = \langle u_1, u_2, u_3 \rangle \) is calculated using the formula:
\[ \|\vec{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2} \]
Here, \( u_1 = -1 \), \( u_2 = -1 \), \( u_3 = 8 \).
So,
\[ \|\vec{u}\| = \sqrt{(-1)^2 + (-1)^2 + 8^2} \]
\[ \|\vec{u}\| = \sqrt{1 + 1 + 64} \]
\[ \|\vec{u}\| = \sqrt{66} \]
**Step 2: Find a unit vector in the direction of \( \vec{u} \)**
A unit vector in the direction of \( \vec{u} \) is given by:
\[ \hat{u} = \frac{\vec{u}}{\|\vec{u}\|} \]
\[ \hat{u} = \frac{\langle -1, -1, 8 \rangle}{\sqrt{66}} \]
Thus, the unit vector is:
\[ \hat{u} = \left\langle \frac{-1}{\sqrt{66}}, \frac{-1}{\sqrt{66}}, \frac{8}{\sqrt{66}} \right\rangle \]
**Final Answers:**
Magnitude \( \|\vec{u}\| \):
\[ \|\vec{u}\| = \sqrt{66} \]
Unit vector in the direction of \( \vec{u} \):
\[ \left\langle \frac{-1}{\sqrt{66}}, \frac{-1}{\sqrt{66}}, \frac{8}{\sqrt{66}} \right\rangle \]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 13 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)