Let the universal set be ℝ, the set of all real numbers, and let  A = {x  ℝ | −3 ≤ x ≤ 0}, B = {x  ℝ −1 < x < 2}, and C = {x  ℝ | 6 < x ≤ 8}. Find each of the following

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Let the universal set be ℝ, the set of all real numbers, and let 

A = {x  ℝ | −3 ≤ x ≤ 0}, B = {x  ℝ −1 < x < 2}, and C = {x  ℝ | 6 < x ≤ 8}.

Find each of the following:

### Set Operations and Intervals

This section presents multiple-choice questions involving set operations and intervals of real numbers. Each question requires identifying the correct set description based on set-complement operations.

#### Question 1: \( A^c \cap B^c \)

Select the correct interval representation for the set operation \( A^c \cap B^c \):

- \( \{ x \in \mathbb{R} \mid x < -2 \text{ or } x \geq 3 \} \)
- \( \{ x \in \mathbb{R} \mid -3 < x < 2 \} \)
- \( \{ x \in \mathbb{R} \mid x \leq -3 \text{ or } x > 2 \} \)
- \( \{ x \in \mathbb{R} \mid x < -3 \text{ or } x \geq 2 \} \)
- \( \{ x \in \mathbb{R} \mid -3 \leq x < 2 \} \)

#### Question 2: \( A^c \cup B^c \)

Select the correct interval representation for the set operation \( A^c \cup B^c \):

- \( \{ x \in \mathbb{R} \mid -1 < x < 0 \} \)
- \( \{ x \in \mathbb{R} \mid x \leq 0 \text{ or } x > 1 \} \)
- \( \{ x \in \mathbb{R} \mid -1 \leq x \leq 0 \} \)
- \( \{ x \in \mathbb{R} \mid x < -1 \text{ or } x \geq 0 \} \)
- \( \{ x \in \mathbb{R} \mid x \leq -1 \text{ or } x > 0 \} \)

#### Question 3: \( (A \cap B)^c \)

Select the correct interval representation for the set operation \( (A \cap B)^c \):

- \( \{ x \in \mathbb{R} \mid x \leq -1 \text{ or } x > 0 \} \)
- \( \{ x \in \math
Transcribed Image Text:### Set Operations and Intervals This section presents multiple-choice questions involving set operations and intervals of real numbers. Each question requires identifying the correct set description based on set-complement operations. #### Question 1: \( A^c \cap B^c \) Select the correct interval representation for the set operation \( A^c \cap B^c \): - \( \{ x \in \mathbb{R} \mid x < -2 \text{ or } x \geq 3 \} \) - \( \{ x \in \mathbb{R} \mid -3 < x < 2 \} \) - \( \{ x \in \mathbb{R} \mid x \leq -3 \text{ or } x > 2 \} \) - \( \{ x \in \mathbb{R} \mid x < -3 \text{ or } x \geq 2 \} \) - \( \{ x \in \mathbb{R} \mid -3 \leq x < 2 \} \) #### Question 2: \( A^c \cup B^c \) Select the correct interval representation for the set operation \( A^c \cup B^c \): - \( \{ x \in \mathbb{R} \mid -1 < x < 0 \} \) - \( \{ x \in \mathbb{R} \mid x \leq 0 \text{ or } x > 1 \} \) - \( \{ x \in \mathbb{R} \mid -1 \leq x \leq 0 \} \) - \( \{ x \in \mathbb{R} \mid x < -1 \text{ or } x \geq 0 \} \) - \( \{ x \in \mathbb{R} \mid x \leq -1 \text{ or } x > 0 \} \) #### Question 3: \( (A \cap B)^c \) Select the correct interval representation for the set operation \( (A \cap B)^c \): - \( \{ x \in \mathbb{R} \mid x \leq -1 \text{ or } x > 0 \} \) - \( \{ x \in \math
### Union of Sets \( A \cup B \)

Options:

1. \(\{ x \in \mathbb{R} \mid -3 \leq x < 2 \}\)
2. \(\{ x \in \mathbb{R} \mid -3 < x \leq 2 \}\)
3. \(\{ x \in \mathbb{R} \mid x \leq -3 \text{ or } x > 2 \}\)
4. \(\{ x \in \mathbb{R} \mid x < -3 \text{ or } x \geq 2 \}\)
5. \(\emptyset\)

### Intersection of Sets \( A \cap B \)

Options:

1. \(\{ x \in \mathbb{R} \mid -1 \leq x < 0 \}\)
2. \(\{ x \in \mathbb{R} \mid -1 < x \leq 0 \}\)
3. \(\{ x \in \mathbb{R} \mid x < -1 \text{ or } x \geq 0 \}\)
4. \(\{ x \in \mathbb{R} \mid x \leq -1 \text{ or } x > 0 \}\)
5. \(\emptyset\)

### Complement of Set \( A^c \)

Options:

1. \(\{ x \in \mathbb{R} \mid -3 < x < 0 \}\)
2. \(\{ x \in \mathbb{R} \mid -3 \leq x \leq 0 \}\)
3. \(\{ x \in \mathbb{R} \mid x \leq -3 \text{ or } x \geq 0 \}\)
4. \(\{ x \in \mathbb{R} \mid x < -3 \text{ or } x > 0 \}\)
5. \(\emptyset\)

### Union of Sets \( A \cup C \)

Options:

1. \(\{ x \in \mathbb{R} \mid -3 \leq x \leq 0 \text{ or } 6 < x \leq 8 \}\)
2. \(\{ x \in \
Transcribed Image Text:### Union of Sets \( A \cup B \) Options: 1. \(\{ x \in \mathbb{R} \mid -3 \leq x < 2 \}\) 2. \(\{ x \in \mathbb{R} \mid -3 < x \leq 2 \}\) 3. \(\{ x \in \mathbb{R} \mid x \leq -3 \text{ or } x > 2 \}\) 4. \(\{ x \in \mathbb{R} \mid x < -3 \text{ or } x \geq 2 \}\) 5. \(\emptyset\) ### Intersection of Sets \( A \cap B \) Options: 1. \(\{ x \in \mathbb{R} \mid -1 \leq x < 0 \}\) 2. \(\{ x \in \mathbb{R} \mid -1 < x \leq 0 \}\) 3. \(\{ x \in \mathbb{R} \mid x < -1 \text{ or } x \geq 0 \}\) 4. \(\{ x \in \mathbb{R} \mid x \leq -1 \text{ or } x > 0 \}\) 5. \(\emptyset\) ### Complement of Set \( A^c \) Options: 1. \(\{ x \in \mathbb{R} \mid -3 < x < 0 \}\) 2. \(\{ x \in \mathbb{R} \mid -3 \leq x \leq 0 \}\) 3. \(\{ x \in \mathbb{R} \mid x \leq -3 \text{ or } x \geq 0 \}\) 4. \(\{ x \in \mathbb{R} \mid x < -3 \text{ or } x > 0 \}\) 5. \(\emptyset\) ### Union of Sets \( A \cup C \) Options: 1. \(\{ x \in \mathbb{R} \mid -3 \leq x \leq 0 \text{ or } 6 < x \leq 8 \}\) 2. \(\{ x \in \
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 9 steps with 9 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,