Let the eigenvalues and eigenvectors of matrix A4x4 be [:] What is the general solution of the differential equation X₁ -1, 01 x(t) = c₁e-t x(t) = c₁e-t (t) = c₁e-t x(t) = c₁e-t 1 0 1 0 0 , A₂ = 2, V₂ = + c₂te²t + c₂e²t + c₂e²t + c₂e²t 0 1 1 0 0 1 1 AMO + c3e²t -4t + c3e-² + c3 e -4t + c3e-4t , X3,4 -4±2i, v3,4 0 0 = sin (4t) cos (4t) 0 0 sin(2t) -cos (2t) 0 0 -sin(2t) cos(2t) = Ax? +c4e²t +c4e-4t 0 0 — sin(2t) cos (2t) +c4e + 0 0 cos(4t) sin (4t). -4t = 0 0 A ti 0 cos(2t) - sin(2t) 0 0 cos(2t) sin(2t) 0 cos(2t) sin(2t). where i = √-1.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let the eigenvalues and eigenvectors of matrix A4x4 be
[:]
What is the general solution of the differential equation
X₁ -1, 01
x(t) = c₁e-t
x(t) = c₁e-t
(t) = c₁e-t
x(t) = c₁e-t
1
0
1
0
0
, A₂ = 2, V₂ =
+ c₂te²t
+ c₂e²t
+ c₂e²t
+ c₂e²t
0
1
1
0
0
1
1
AMO
+ c3e²t
-4t
+ c3e-²
+ c3 e
-4t
+ c3e-4t
, X3,4 -4±2i, v3,4
0
0
=
sin (4t)
cos (4t)
0
0
sin(2t)
-cos (2t)
0
0
-sin(2t)
cos(2t)
= Ax?
+c4e²t
+c4e-4t
0
0
— sin(2t)
cos (2t)
+c4e
+
0
0
cos(4t)
sin (4t).
-4t
=
0
0
A
ti
0
cos(2t)
- sin(2t)
0
0
cos(2t)
sin(2t)
0
cos(2t)
sin(2t).
where i =
√-1.
Transcribed Image Text:Let the eigenvalues and eigenvectors of matrix A4x4 be [:] What is the general solution of the differential equation X₁ -1, 01 x(t) = c₁e-t x(t) = c₁e-t (t) = c₁e-t x(t) = c₁e-t 1 0 1 0 0 , A₂ = 2, V₂ = + c₂te²t + c₂e²t + c₂e²t + c₂e²t 0 1 1 0 0 1 1 AMO + c3e²t -4t + c3e-² + c3 e -4t + c3e-4t , X3,4 -4±2i, v3,4 0 0 = sin (4t) cos (4t) 0 0 sin(2t) -cos (2t) 0 0 -sin(2t) cos(2t) = Ax? +c4e²t +c4e-4t 0 0 — sin(2t) cos (2t) +c4e + 0 0 cos(4t) sin (4t). -4t = 0 0 A ti 0 cos(2t) - sin(2t) 0 0 cos(2t) sin(2t) 0 cos(2t) sin(2t). where i = √-1.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,