Let T R2 R2 be a linear transfor [3] into the vector a (i) T maps vector u

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Linear Transformation Problem

#### Problem Statement

Let \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear transformation such that:

(i) \( T \) maps vector \( \mathbf{u} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \) into the vector \( \mathbf{a} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \),

(ii) \( T \) maps vector \( \mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \) into the vector \( \mathbf{b} = \begin{bmatrix} -4 \\ 5 \end{bmatrix} \).

Use the fact that \( T \) is a linear transformation to find \( T(3\mathbf{u} + 2\mathbf{v}) \).

#### Explanation

Given the properties of the linear transformation \( T \), the vectors \( \mathbf{u} \) and \( \mathbf{v} \) are mapped to specific vectors \( \mathbf{a} \) and \( \mathbf{b} \) respectively. The goal is to apply the linearity of \( T \) to find the image of the linear combination \( 3\mathbf{u} + 2\mathbf{v} \).

##### Step-by-Step Solution

1. **Express \( T \left( 3\mathbf{u} + 2\mathbf{v} \right) \) using linearity:**

\[
T \left( 3\mathbf{u} + 2\mathbf{v} \right) = 3T(\mathbf{u}) + 2T(\mathbf{v})
\]

2. **Substitute the known mappings:**

\[
T(\mathbf{u}) = \mathbf{a} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}
\]

\[
T(\mathbf{v}) = \mathbf{b} = \begin{bmatrix} -4 \\ 5 \end{bmatrix}
\]

3. **Compute \( 3T(\mathbf{u}) \) and \( 2T(\mathbf{v}) \):**

\[
3T(\mathbf{u}) = 3 \begin{
Transcribed Image Text:### Linear Transformation Problem #### Problem Statement Let \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear transformation such that: (i) \( T \) maps vector \( \mathbf{u} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \) into the vector \( \mathbf{a} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \), (ii) \( T \) maps vector \( \mathbf{v} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \) into the vector \( \mathbf{b} = \begin{bmatrix} -4 \\ 5 \end{bmatrix} \). Use the fact that \( T \) is a linear transformation to find \( T(3\mathbf{u} + 2\mathbf{v}) \). #### Explanation Given the properties of the linear transformation \( T \), the vectors \( \mathbf{u} \) and \( \mathbf{v} \) are mapped to specific vectors \( \mathbf{a} \) and \( \mathbf{b} \) respectively. The goal is to apply the linearity of \( T \) to find the image of the linear combination \( 3\mathbf{u} + 2\mathbf{v} \). ##### Step-by-Step Solution 1. **Express \( T \left( 3\mathbf{u} + 2\mathbf{v} \right) \) using linearity:** \[ T \left( 3\mathbf{u} + 2\mathbf{v} \right) = 3T(\mathbf{u}) + 2T(\mathbf{v}) \] 2. **Substitute the known mappings:** \[ T(\mathbf{u}) = \mathbf{a} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \] \[ T(\mathbf{v}) = \mathbf{b} = \begin{bmatrix} -4 \\ 5 \end{bmatrix} \] 3. **Compute \( 3T(\mathbf{u}) \) and \( 2T(\mathbf{v}) \):** \[ 3T(\mathbf{u}) = 3 \begin{
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,