Let T : R* → R³ be a linear transformation such that T(1,0,0,0) = (3, 2, 1), T(0,1,0,0) =(-2,1, 7), %3D %3D T(0,0, 1, 0) = (0, 1,0), T(0,0,0,1) = (2, –1,0) (a) Find the standard matrix for this linear transformation. (b) Find T(3, 2, 1, 4).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let T : R4 → R³ be a linear transformation such that
T(1,0,0,0) = (3, 2, 1), T(0,1,0,0) =(-2,1,7),
T(0,0, 1, 0) = (0, 1,0), T(0,0,0,1) = (2, –1,0)
(a) Find the standard matrix for this linear transformation.
(b) Find T(3, 2, 1, 4).
Transcribed Image Text:Let T : R4 → R³ be a linear transformation such that T(1,0,0,0) = (3, 2, 1), T(0,1,0,0) =(-2,1,7), T(0,0, 1, 0) = (0, 1,0), T(0,0,0,1) = (2, –1,0) (a) Find the standard matrix for this linear transformation. (b) Find T(3, 2, 1, 4).
Expert Solution
Step 1

We have:

T1,0,0,0=3,2,1T0,1,0,0=-2,1,7T0,0,1,0=0,1,0T0,0,0,1=2,-1,0

Now, if we have:

e1=1000  , e2=0100, e3=0010 , e4=0001

Then we are given:

Te1=T1000=321Te2=T0100=-217Te3=T0010=010Te4=T0001=2-10

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,