Let T: P2 → P₁ be defined by T(p(x)) = p'(x). Let B = {1 + x + x², 1 + x, 1} and C = {1+ 3x, 2+5x}. Find [7], the matrix representation of T with respect to the bases 3 and C.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \( T : P_2 \to P_1 \) be defined by \( T(p(x)) = p'(x) \).

Let \( \mathcal{B} = \{ 1 + x + x^2, 1 + x, 1 \} \) and \( \mathcal{C} = \{ 1 + 3x, 2 + 5x \} \).

Find \([T]_{\mathcal{B}}^{\mathcal{C}} \), the matrix representation of \( T \) with respect to the bases \(\mathcal{B} \) and \(\mathcal{C} \).

\[ [T]_{\mathcal{B}}^{\mathcal{C}} = 
\begin{bmatrix}
\text{Ex: 5} & & \\
& & \\
& &
\end{bmatrix} \]
Transcribed Image Text:Let \( T : P_2 \to P_1 \) be defined by \( T(p(x)) = p'(x) \). Let \( \mathcal{B} = \{ 1 + x + x^2, 1 + x, 1 \} \) and \( \mathcal{C} = \{ 1 + 3x, 2 + 5x \} \). Find \([T]_{\mathcal{B}}^{\mathcal{C}} \), the matrix representation of \( T \) with respect to the bases \(\mathcal{B} \) and \(\mathcal{C} \). \[ [T]_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} \text{Ex: 5} & & \\ & & \\ & & \end{bmatrix} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,