Let T be a linear transformation from R³ to R² defined by T(x, y, z) = (2x + y + z, x − y − z) (*) a) Find the matrix of T with respect to the bases B₁ = {(1,-1, 1), (1, 2, -3), (-2, 1, -1)} and B₂ = {(1, -2), (1,-1)}. b) Use the matrix found in part a) to find T(v), where (v) B₁ = (2, 1, 1) hence v = (1, 1, -2). Compare this with the result you obtain by using formula (*).
Let T be a linear transformation from R³ to R² defined by T(x, y, z) = (2x + y + z, x − y − z) (*) a) Find the matrix of T with respect to the bases B₁ = {(1,-1, 1), (1, 2, -3), (-2, 1, -1)} and B₂ = {(1, -2), (1,-1)}. b) Use the matrix found in part a) to find T(v), where (v) B₁ = (2, 1, 1) hence v = (1, 1, -2). Compare this with the result you obtain by using formula (*).
Elementary Linear Algebra (MindTap Course List)
8th Edition
ISBN:9781305658004
Author:Ron Larson
Publisher:Ron Larson
Chapter7: Eigenvalues And Eigenvectors
Section7.CM: Cumulative Review
Problem 25CM: Find a basis B for R3 such that the matrix for the linear transformation T:R3R3,...
Related questions
Question
![Let T be a linear transformation from R³ to R2 defined by
T(x, y, z) = (2x + y + z, x-y-z)
(*)
a) Find the matrix of T with respect to the bases B₁ = {(1,-1, 1), (1, 2, -3), (-2, 1,-1)} and B₂ =
{(1, −2), (1, -1)}.
b) Use the matrix found in part a) to find 7(v), where (v) B₁ = (2,1,1) hence v = (1,1,-2). Compare
this with the result you obtain by using formula (*).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc0602eaa-79a9-4455-9bd8-2642a3c0ae64%2F859d9231-f914-49b8-afbe-26f53817fd66%2Fltjuggb_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Let T be a linear transformation from R³ to R2 defined by
T(x, y, z) = (2x + y + z, x-y-z)
(*)
a) Find the matrix of T with respect to the bases B₁ = {(1,-1, 1), (1, 2, -3), (-2, 1,-1)} and B₂ =
{(1, −2), (1, -1)}.
b) Use the matrix found in part a) to find 7(v), where (v) B₁ = (2,1,1) hence v = (1,1,-2). Compare
this with the result you obtain by using formula (*).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781305115545/9781305115545_smallCoverImage.gif)
College Algebra
Algebra
ISBN:
9781305115545
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning
![Algebra for College Students](https://www.bartleby.com/isbn_cover_images/9781285195780/9781285195780_smallCoverImage.gif)
Algebra for College Students
Algebra
ISBN:
9781285195780
Author:
Jerome E. Kaufmann, Karen L. Schwitters
Publisher:
Cengage Learning