Let S = C[0,1] be the set of real-valued continuous functions defined on the closed interval [0, 1], where we definef+ g and fg, as usual, by (f+ g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x). Let O and I be the constant functions 0 and 1, respectively. Show that (a) (S,+,) is a commutative ring with unity. S has nonzero zero divisors. (b)
Let S = C[0,1] be the set of real-valued continuous functions defined on the closed interval [0, 1], where we definef+ g and fg, as usual, by (f+ g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x). Let O and I be the constant functions 0 and 1, respectively. Show that (a) (S,+,) is a commutative ring with unity. S has nonzero zero divisors. (b)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
1(b)
![1. Let S = C[0,1] be the set of real-valued continuous functions
defined on the closed interval [0,1], where we define f+ g and fg,
as usual, by (ƒ+ g)(x) = f(x) + g(x) and (fg) (x) = f(x)g(x). Let
0 and I be the constant functions 0 and 1, respectively. Show that
(a) (S, +,) is a commutative ring with unity.
(b)
S has nonzero zero divisors.
(c) S has no idempotents #0,1.
(d)
Let a = [0,1]. Then the set T = {ƒE S\ſ(a) = 0) is a subring
such that fg, gfE T for all ƒE T and g E S.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F19616a01-3b9f-4ded-9626-43dcd5e68cc7%2F544cb40e-20e1-4a0c-a0d8-15eaceae23d6%2Ftv9104l_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1. Let S = C[0,1] be the set of real-valued continuous functions
defined on the closed interval [0,1], where we define f+ g and fg,
as usual, by (ƒ+ g)(x) = f(x) + g(x) and (fg) (x) = f(x)g(x). Let
0 and I be the constant functions 0 and 1, respectively. Show that
(a) (S, +,) is a commutative ring with unity.
(b)
S has nonzero zero divisors.
(c) S has no idempotents #0,1.
(d)
Let a = [0,1]. Then the set T = {ƒE S\ſ(a) = 0) is a subring
such that fg, gfE T for all ƒE T and g E S.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)