Let S be the part of the plane x + y+ z = 2 in the first octant oriented up, and let F(x, y, z) = (x + Y, x – y, 2z). If we change the surface integral (f. F · dS into iterated integrals, we get: 2-r 2 * (x + z)dydx o f S (4 – 2y)dydx O 13 *(4 – 2y)dydx 2-x OS S*(4 – 2y)dydx 2-x

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \( S \) be the part of the plane \( x + y + z = 2 \) in the first octant oriented up, and let 

\[
\vec{F}(x, y, z) = \langle x + y, x - y, 2z \rangle.
\]

If we change the surface integral \(\iint_S \vec{F} \cdot d\vec{S}\) into iterated integrals, we get:

- \( \bigcirc \ 2 \int_0^2 \int_0^{2-x} (x + z) \, dy \, dx \)

- \( \bigcirc \ \int_0^2 \int_0^2 (4 - 2y) \, dy \, dx \)

- \( \bigcirc \ \sqrt{3} \int_0^2 \int_0^{2-x} (4 - 2y) \, dy \, dx \)

- \( \bigcirc \ \int_0^2 \int_0^{2-x} (4 - 2y) \, dy \, dx \)
Transcribed Image Text:Let \( S \) be the part of the plane \( x + y + z = 2 \) in the first octant oriented up, and let \[ \vec{F}(x, y, z) = \langle x + y, x - y, 2z \rangle. \] If we change the surface integral \(\iint_S \vec{F} \cdot d\vec{S}\) into iterated integrals, we get: - \( \bigcirc \ 2 \int_0^2 \int_0^{2-x} (x + z) \, dy \, dx \) - \( \bigcirc \ \int_0^2 \int_0^2 (4 - 2y) \, dy \, dx \) - \( \bigcirc \ \sqrt{3} \int_0^2 \int_0^{2-x} (4 - 2y) \, dy \, dx \) - \( \bigcirc \ \int_0^2 \int_0^{2-x} (4 - 2y) \, dy \, dx \)
Expert Solution
steps

Step by step

Solved in 6 steps

Blurred answer
Knowledge Booster
Functions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,