Let S be the part of the plane x + y+ z = 2 in the first octant oriented up, and let F(x, y, z) = (x + Y, x – y, 2z). If we change the surface integral (f. F · dS into iterated integrals, we get: 2-r 2 * (x + z)dydx o f S (4 – 2y)dydx O 13 *(4 – 2y)dydx 2-x OS S*(4 – 2y)dydx 2-x
Let S be the part of the plane x + y+ z = 2 in the first octant oriented up, and let F(x, y, z) = (x + Y, x – y, 2z). If we change the surface integral (f. F · dS into iterated integrals, we get: 2-r 2 * (x + z)dydx o f S (4 – 2y)dydx O 13 *(4 – 2y)dydx 2-x OS S*(4 – 2y)dydx 2-x
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Let \( S \) be the part of the plane \( x + y + z = 2 \) in the first octant oriented up, and let
\[
\vec{F}(x, y, z) = \langle x + y, x - y, 2z \rangle.
\]
If we change the surface integral \(\iint_S \vec{F} \cdot d\vec{S}\) into iterated integrals, we get:
- \( \bigcirc \ 2 \int_0^2 \int_0^{2-x} (x + z) \, dy \, dx \)
- \( \bigcirc \ \int_0^2 \int_0^2 (4 - 2y) \, dy \, dx \)
- \( \bigcirc \ \sqrt{3} \int_0^2 \int_0^{2-x} (4 - 2y) \, dy \, dx \)
- \( \bigcirc \ \int_0^2 \int_0^{2-x} (4 - 2y) \, dy \, dx \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9a885923-ea1b-4069-b3f1-c8a8d20774f8%2F87858496-4ddd-45bd-a8d2-8fd0118cb0ca%2F9y1yl8c_processed.png&w=3840&q=75)
Transcribed Image Text:Let \( S \) be the part of the plane \( x + y + z = 2 \) in the first octant oriented up, and let
\[
\vec{F}(x, y, z) = \langle x + y, x - y, 2z \rangle.
\]
If we change the surface integral \(\iint_S \vec{F} \cdot d\vec{S}\) into iterated integrals, we get:
- \( \bigcirc \ 2 \int_0^2 \int_0^{2-x} (x + z) \, dy \, dx \)
- \( \bigcirc \ \int_0^2 \int_0^2 (4 - 2y) \, dy \, dx \)
- \( \bigcirc \ \sqrt{3} \int_0^2 \int_0^{2-x} (4 - 2y) \, dy \, dx \)
- \( \bigcirc \ \int_0^2 \int_0^{2-x} (4 - 2y) \, dy \, dx \)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 6 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)