Let S be a set containing the two column matrices shown S = first column be us and the second column be u Let = 2 -{{[]}-{]}}- Find the projection of onto S. First normalize S. Then calculate 3 < ảv, uì > uì + < v, už > úž. Let the

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please help with this process. Thank you.

Let \( \mathcal{S} \) be a set containing the two column matrices shown:

\[
\mathcal{S} = \left\{ \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\} \right\}.
\]

Let the first column be \( \vec{u}_1 \) and the second column be \( \vec{u}_2 \).

Let \( \vec{v} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \).

Find the projection of \( \vec{v} \) onto \( \mathcal{S} \). First normalize \( \mathcal{S} \). Then calculate:

\[
\langle \vec{a} \vec{v}, \vec{u}_1 \rangle \vec{u}_1 + \langle \vec{v}, \vec{u}_2 \rangle \vec{u}_2.
\]
Transcribed Image Text:Let \( \mathcal{S} \) be a set containing the two column matrices shown: \[ \mathcal{S} = \left\{ \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\} \right\}. \] Let the first column be \( \vec{u}_1 \) and the second column be \( \vec{u}_2 \). Let \( \vec{v} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \). Find the projection of \( \vec{v} \) onto \( \mathcal{S} \). First normalize \( \mathcal{S} \). Then calculate: \[ \langle \vec{a} \vec{v}, \vec{u}_1 \rangle \vec{u}_1 + \langle \vec{v}, \vec{u}_2 \rangle \vec{u}_2. \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,