Let R be any ring. If f(X) = ao + α₁X + a₂X² + . = ao + a₁X + a₂X² + ... + a₂X¹ € R[X], define the anX" (formal) derivative of f by f'(X) = a₁ + 2a₂X+nan X-1. Prove that for any polynomials f(X), g(X) € R[X], (ƒ(X) + g(X))' = f'(X) + g'(X) (f(X)g(X))' = f(X)g'(X) + f'(X)g(X)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let R be any ring. If f(X) = ao + α₁X + a₂X² + .
= ao + a₁X + a₂X² + ... + a₂X¹ € R[X], define the
anX"
(formal) derivative of f by
f'(X) = a₁ + 2a₂X+nan X-1.
Prove that for any polynomials f(X), g(X) € R[X],
(ƒ(X) + g(X))' = f'(X) + g'(X)
(f(X)g(X))' = f(X)g'(X) + f'(X)g(X)
Transcribed Image Text:Let R be any ring. If f(X) = ao + α₁X + a₂X² + . = ao + a₁X + a₂X² + ... + a₂X¹ € R[X], define the anX" (formal) derivative of f by f'(X) = a₁ + 2a₂X+nan X-1. Prove that for any polynomials f(X), g(X) € R[X], (ƒ(X) + g(X))' = f'(X) + g'(X) (f(X)g(X))' = f(X)g'(X) + f'(X)g(X)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,