Let P3 → M22 be the linear transformation L(at³ +bt² + ct+d) = 1. The polinomial 2t³ + 4t² + 2t − 4 (polinomu L'nin çekirdeğinin) 2. The polinomial t³ +t-2 (polinomu L'nin çekirdeğinin) 3. The matrix (matrisi L'nin görüntü kümesinin) a c b+d 2c + d 2a-b in the range of L. ◆ in the kernel of L. in the kernel of L.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

first gap= is not / is 

second gap = is not / is 

third gap = is not/ is

fill the gaps

Let P3 → M22 be the linear transformation L(at³ + bt² + ct + d)
=
1. The polinomial 2t³ + 4t² + 2t − 4 (polinomu L'nin çekirdeğinin)
2. The polinomial t³ +t-2 (polinomu L'nin çekirdeğinin)
3. The matrix
(matrisi L'nin görüntü kümesinin)
4. dim(Ker L)= ◆
5. dim(Range L)= ◆
a-c 2c + d
b+d 2a b
19
in the range of L.
◆
◆ in the kernel of L.
in the kernel of L.
Transcribed Image Text:Let P3 → M22 be the linear transformation L(at³ + bt² + ct + d) = 1. The polinomial 2t³ + 4t² + 2t − 4 (polinomu L'nin çekirdeğinin) 2. The polinomial t³ +t-2 (polinomu L'nin çekirdeğinin) 3. The matrix (matrisi L'nin görüntü kümesinin) 4. dim(Ker L)= ◆ 5. dim(Range L)= ◆ a-c 2c + d b+d 2a b 19 in the range of L. ◆ ◆ in the kernel of L. in the kernel of L.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,