Let p be a polynomial of degree n and let S = { x is an element in interval (0,pi/2) | cos(x) = p(x) } How could I apply Rolle's theorem to prove that the number of elements in my set, denoted by |S| can satisfy: |S| < or equal to n+1 Any help is appreciated, thank you.
Let p be a polynomial of degree n and let S = { x is an element in interval (0,pi/2) | cos(x) = p(x) } How could I apply Rolle's theorem to prove that the number of elements in my set, denoted by |S| can satisfy: |S| < or equal to n+1 Any help is appreciated, thank you.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Let p be a polynomial of degree n and let
S = { x is an element in interval (0,pi/2) | cos(x) = p(x) }
How could I apply Rolle's theorem to prove that the number of elements in my set, denoted by |S| can satisfy:
|S| < or equal to n+1
Any help is appreciated, thank you.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,