Let mi EZ for i=1,2,...,k and gcd (mi, mj) = 1 for all i ‡ j Prove that for x,y e Zif x = y (mod m₂) then, where m = m1 m2 mk. x=y (mod m)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \( m_i \in \mathbb{Z} \) for \( i = 1, 2, \ldots, k \) and \(\gcd(m_i, m_j) = 1\) for all \( i \neq j \).

Prove that for \( x, y \in \mathbb{Z} \) if 

\[ x \equiv y \pmod{m_i} \]

then,

\[ x \equiv y \pmod{m} \]

where \( m = m_1 \cdot m_2 \cdot \ldots \cdot m_k \).
Transcribed Image Text:Let \( m_i \in \mathbb{Z} \) for \( i = 1, 2, \ldots, k \) and \(\gcd(m_i, m_j) = 1\) for all \( i \neq j \). Prove that for \( x, y \in \mathbb{Z} \) if \[ x \equiv y \pmod{m_i} \] then, \[ x \equiv y \pmod{m} \] where \( m = m_1 \cdot m_2 \cdot \ldots \cdot m_k \).
Expert Solution
Step 1: Define congruent

Given that m subscript i element of straight integer numbers for i=1, 2,..., k and g c d left parenthesis m subscript i comma m subscript j right parenthesis equals 1 for all i not equal to j

Also given that x identical to y left parenthesis m o d space m subscript i right parenthesis


Now, x identical to y left parenthesis m o d space m subscript i right parenthesis

This implies that m subscript i vertical line x minus y

steps

Step by step

Solved in 3 steps with 20 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,