Let M be a proper subspace of a finite dimension vector space X over a field F show that whether: (1) If S is a base for M then S base for X or not, (2) If T base for X then base for M or not. (b) Let X-P₂(x) be a vector space over polynomials a field of real numbers R, write with L prove convex subset of X and hyperspace of X. Q₂/ (a) Let X-R³ be a vector space over a over a field of real numbers R and A=((a,b,o), a,bE R), A is a subspace of X, let g be a function from A into R such that gla,b,o)-a, gEA, find fe X such that g(t)=f(t), tEA. (b) Let M be a non-empty subset of a space X, show that M is a hyperplane of X iff there Xiff there exists fE X/10) and tE F such that M=(xE X/ f(x)=t). (c) Show that the relation equivalent is an equivalence relation on set of norms on a space X.

Elementary Linear Algebra (MindTap Course List)
8th Edition
ISBN:9781305658004
Author:Ron Larson
Publisher:Ron Larson
Chapter5: Inner Product Spaces
Section5.CR: Review Exercises
Problem 47CR: Find an orthonormal basis for the subspace of Euclidean 3 space below. W={(x1,x2,x3):x1+x2+x3=0}
icon
Related questions
Question
Let M be a proper subspace of a finite dimension vector space X over a field F show that
whether: (1) If S is a base for M then S base for X or not, (2) If T base for X then base for M
or not.
(b) Let X-P₂(x) be a vector space over polynomials a field of real numbers R, write with L
prove convex subset of X and hyperspace of X.
Q₂/ (a) Let X-R³ be a vector space over a over a field of real numbers R and
A=((a,b,o), a,bE R), A is a subspace of X, let g be a function from A into R such that
gla,b,o)-a, gEA, find fe X such that g(t)=f(t), tEA.
(b) Let M be a non-empty subset of a space X, show that M is a hyperplane of X iff there
Xiff there
exists fE X/10) and tE F such that M=(xE X/ f(x)=t).
(c) Show that the relation equivalent is an equivalence relation on set of norms on a space
X.
Transcribed Image Text:Let M be a proper subspace of a finite dimension vector space X over a field F show that whether: (1) If S is a base for M then S base for X or not, (2) If T base for X then base for M or not. (b) Let X-P₂(x) be a vector space over polynomials a field of real numbers R, write with L prove convex subset of X and hyperspace of X. Q₂/ (a) Let X-R³ be a vector space over a over a field of real numbers R and A=((a,b,o), a,bE R), A is a subspace of X, let g be a function from A into R such that gla,b,o)-a, gEA, find fe X such that g(t)=f(t), tEA. (b) Let M be a non-empty subset of a space X, show that M is a hyperplane of X iff there Xiff there exists fE X/10) and tE F such that M=(xE X/ f(x)=t). (c) Show that the relation equivalent is an equivalence relation on set of norms on a space X.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elementary Linear Algebra (MindTap Course List)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning