Let L(y(t)) = Y(s). The Laplace transform of another solution to the second-order differential equation is Y(s). Determine the solution of the differential equation y(t) and the original differential equation when y(0) = 5 and y′(0) = 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Let L(y(t)) = Y(s). The Laplace transform of another solution to the second-order differential equation is Y(s).

Determine the solution of the differential equation y(t) and the original differential equation when y(0) = 5 and y′(0) = 0.

Olkoon L(y(t)) =Y(s). Erään toisen kertaluvun differentiaaliyhtälön ratkaisun Laplacen muunnos on
5 s2 + 8 – 1
Y (s)
g3 + 9 s
Määrää differentiaaliyhtälön ratkaisu y(t) ja alkuperäinen differentiaaliyhtälö, kun y(0) = 5 ja y' (0) = 0.
Opastus: Termin y(") (t) saat syöttämällä diff(y(t),t,n)ja termin 8(t) syöttämällä delta(t).
y(t) :
Yhtälö:
Transcribed Image Text:Olkoon L(y(t)) =Y(s). Erään toisen kertaluvun differentiaaliyhtälön ratkaisun Laplacen muunnos on 5 s2 + 8 – 1 Y (s) g3 + 9 s Määrää differentiaaliyhtälön ratkaisu y(t) ja alkuperäinen differentiaaliyhtälö, kun y(0) = 5 ja y' (0) = 0. Opastus: Termin y(") (t) saat syöttämällä diff(y(t),t,n)ja termin 8(t) syöttämällä delta(t). y(t) : Yhtälö:
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,