Let log 7=Z and log 4 = L. Write the expression in terms of Z and L. 7 log b 64 7 log b 64 %3D

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
**Problem Statement:**

Let \( \log_b 7 = Z \) and \( \log_b 4 = L \). Write the expression in terms of \( Z \) and \( L \).

**Expression:**

\[ \log_b \sqrt{\frac{7}{64}} \]

**Solution Setup:**

\[ \log_b \sqrt{\frac{7}{64}} = \Box \]

---

**Explanation:**

To solve for the box, note that:

1. The expression inside the logarithm can be rewritten using the properties of logarithms and exponents.
2. \( \sqrt{\frac{7}{64}} = \left(\frac{7}{64}\right)^{1/2} = 7^{1/2} \times 64^{-1/2} \).
3. Therefore, \( \log_b \left( 7^{1/2} \times 64^{-1/2} \right) \) becomes \( \frac{1}{2} \log_b 7 - \frac{1}{2} \log_b 64 \).

Using the given \( \log_b 7 = Z \) and evaluating \( \log_b 64 \), knowing \( 64 = 4^3 \):

\[ \log_b 64 = \log_b 4^3 = 3\log_b 4 = 3L \]

Now substitute:

\[ \frac{1}{2}(Z) - \frac{1}{2}(3L) \]

\[ \frac{1}{2}Z - \frac{3}{2}L \]

Therefore, the answer is:

\[ \boxed{\frac{1}{2}Z - \frac{3}{2}L} \]
Transcribed Image Text:**Problem Statement:** Let \( \log_b 7 = Z \) and \( \log_b 4 = L \). Write the expression in terms of \( Z \) and \( L \). **Expression:** \[ \log_b \sqrt{\frac{7}{64}} \] **Solution Setup:** \[ \log_b \sqrt{\frac{7}{64}} = \Box \] --- **Explanation:** To solve for the box, note that: 1. The expression inside the logarithm can be rewritten using the properties of logarithms and exponents. 2. \( \sqrt{\frac{7}{64}} = \left(\frac{7}{64}\right)^{1/2} = 7^{1/2} \times 64^{-1/2} \). 3. Therefore, \( \log_b \left( 7^{1/2} \times 64^{-1/2} \right) \) becomes \( \frac{1}{2} \log_b 7 - \frac{1}{2} \log_b 64 \). Using the given \( \log_b 7 = Z \) and evaluating \( \log_b 64 \), knowing \( 64 = 4^3 \): \[ \log_b 64 = \log_b 4^3 = 3\log_b 4 = 3L \] Now substitute: \[ \frac{1}{2}(Z) - \frac{1}{2}(3L) \] \[ \frac{1}{2}Z - \frac{3}{2}L \] Therefore, the answer is: \[ \boxed{\frac{1}{2}Z - \frac{3}{2}L} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education